ASI(政策・規制)に関するニュース一覧

AMD CEO「AIバブル懸念は過剰」計算資源不足が好機

AI市場の現状と展望

AIは最も変革的な技術でありバブル懸念は時期尚早
モデル訓練から実利用・エージェントへ需要が移行中
世界的な計算能力不足が続き、巨額投資は正当化
今後1年でAIは日常生活に劇的に浸透すると予測

激化する競争と勝算

Nvidiaだけでなく巨大テックの独自チップとも競合
単一の勝者ではなく適材適所のチップが共存する未来
技術革新のスピードが全てであり「最速」を目指す
米国の技術覇権維持には国家安全保障が最優先事項

米AMDのリサ・スーCEOは12日、サンフランシスコで開催されたイベントに登壇し、「AIバブル懸念は過剰だ」と市場の悲観論を一蹴しました。AIはキャリアの中で最も変革的な技術であり、まだ初期段階にあると強調しています。

スー氏は、現在の巨額投資について「需要に対し計算能力が圧倒的に不足している」と説明しました。モデルの訓練だけでなく、実際の業務利用やエージェント機能への需要が急増しており、設備投資は合理的であるとの見解です。

競争環境については、Nvidiaとの二強対決という単純な構図を否定しました。GoogleAmazonなどが独自チップ開発を進める中、CPUやGPUASICなど多様な半導体が適材適所で求められる「共存の時代」を予測しています。

半導体業界で最も重要なのは「技術革新のスピード」です。過去の市場とは異なり、AI分野では常に技術の跳躍(リープフロッグ)が起きており、アイデアを競合より早く市場に投入することが唯一の勝機となります。

米中関係に関しては、米国国家安全保障が最優先であると明言しました。その上で、米国の技術覇権を維持するためには、中国の優秀な人材や市場へのアクセスも戦略的に重要であるという現実的な姿勢を示しています。

スー氏は、AIが今後1年でさらに日常生活に浸透すると予測します。「AIがまだ十分に正確ではない」という課題を認めつつも、生産性向上への貢献は計り知れず、今後の進化に強い期待を寄せました。

AIエージェント版Googleへ、Fetchが新基盤3種発表

エージェント経済圏のインフラ

個人AI調整基盤ASI:Oneを発表
企業認証ポータルFetch Business
200万超のエージェント登録Agentverse

自律的なタスク実行と信頼性

複数AI連携で複雑なタスクを完遂可能
知識グラフで個人の好みを学習・管理
企業ID認証なりすましエージェント防止
AIによる決済実行も視野に展開

Fetch AIが、AIエージェント同士が連携してタスクを実行するための統合プラットフォームを発表しました。元DeepMind初期投資家が率いる同社は、2025年11月19日、個人向け調整基盤「ASI:One」、企業向け認証「Fetch Business」、検索ディレクトリ「Agentverse」を公開し、AIエージェントが相互運用可能な「エージェントWeb」の構築を目指します。

中核となる「ASI:One」は、ユーザーの要望に応じて複数の専門エージェントを指揮するオーケストレーションツールです。従来のチャットAIが情報提示に留まるのに対し、本システムは旅行予約や購買といった複雑なワークフローを、ユーザーの好みや履歴を学習した知識グラフに基づいて自律的に完遂します。

エージェント普及の課題である「発見」と「信頼」を解決するため、企業認証とディレクトリ機能も提供します。企業は「@Nike」のような固有IDを取得して信頼性を証明でき、ユーザーは200万以上の登録エージェントから安全な接続先を検索可能です。これはWebにおけるドメイン登録やGoogle検索に相当するインフラです。

現在のAI市場は、単なる会話から行動主体への移行期にあります。しかし、多くのエージェントは互換性がなく孤立しています。Fetch AIは、プラットフォームに依存しない共通の通信・決済基盤を提供することで、異なる企業や技術で作られたAI同士が経済活動を行えるエコシステムの確立を狙っています。

ソフトバンク、54億ドルでABBロボティクス買収 Physical AIを新フロンティアに

Physical AIへの大型投資

買収額は約54億ドル(53.75億ドル)
買収対象はABBグループのロボティクス事業部門
孫正義CEO「次なるフロンティアはPhysical AI」
2026年中旬から下旬買収完了見込み

成長戦略「ASIと融合」を加速

AIチップ・DC・エネルギーと並ぶ注力分野
産業用ロボット分野での事業拡大を再加速
従業員約7,000人、幅広いロボット製品群を獲得
既存のロボティクス投資群との相乗効果を追求

ソフトバンクグループは10月8日、スイスの巨大企業ABBグループのロボティクス事業部門を約53.75億ドル(約8,000億円超)で買収すると発表しました。これは、孫正義CEOが掲げる次なる成長分野「Physical AI(フィジカルAI)」戦略を具現化する大型投資です。規制当局の承認を経て、2026年中旬から下旬に完了する見込みです。

今回の買収は、ソフトバンクが「情報革命」の次なるフェーズとしてAIに集中投資する姿勢を明確に示しています。孫CEOは、「Physical AI」とは人工超知能(ASI)とロボティクスを融合させることであり、人類の進化を推進する画期的な進化をもたらすと強調しています。過去の失敗例を超え、AIを物理世界に実装する試みを加速させます。

買収対象となるABBのロボティクス事業部門は、約7,000人の従業員を抱え、ピッキングや塗装、清掃など産業用途の幅広いロボット機器を提供しています。2024年の売上は23億ドルでしたが、前年比で減少傾向にありました。ソフトバンクは、この部門の販売を再活性化させ、成長軌道に乗せることを目指しています。

ソフトバンクは現在、ロボティクスを最重要視する四つの戦略分野の一つに位置づけています。残りの三分野は、AIチップ、AIデータセンターエネルギーです。この大型投資は、AIインフラ全体を支配し、ASIを実現するという孫氏の壮大なビジョン達成に向けた、重要な布石となります。

ソフトバンクはすでに、倉庫自動化のAutoStoreやスタートアップのSkild AI、Agile Robotsなど、様々なロボティクス関連企業に投資しています。今回のABB買収により、既存のポートフォリオとの相乗効果が期待されます。特に、高性能な産業用ロボット技術とAI知能を結びつけることで、競争優位性を確立する狙いです。

Google、思考するロボットAI発表 物理世界で複雑タスク遂行

Google DeepMindは2025年9月25日、ロボットが物理世界で複雑なタスクを自律的に解決するための新AIモデル群「Gemini Robotics 1.5」を発表しました。計画を立てる「思考」モデルと指示を実行する「行動」モデルが連携。Web検索で情報を収集し、多段階のタスクを遂行します。汎用ロボットの実現に向けた大きな一歩となり、一部モデルは開発者向けにAPIが公開されます。 今回の発表の核心は2つのモデルの連携です。「Gemini Robotics-ER 1.5」が脳のように高レベルな計画を担当。Google検索を使い情報を集め、物理環境を理解し行動計画を作成します。単一指示への反応を超え、真の課題解決能力を目指します。 計画モデル「ER 1.5」が立てた計画は、自然言語の指示として行動モデル「Gemini Robotics 1.5」に渡ります。行動モデルは視覚と言語を理解し、指示をロボットの動作に変換。例えば、地域のゴミ分別ルールを調べ、目の前の物を正しく仕分けるといった複雑なタスクを実行します。 新モデルの大きな特徴は、行動前に「思考」する点です。単に指示を動作に変換するだけでなく、内部で自然言語による推論を行います。タスクを小さなステップに分解し、複雑な要求を理解。この思考プロセスは言語で説明可能で、意思決定の透明性向上にも繋がります。 「Gemini Robotics 1.5」は、異なる形状のロボット間での学習転移能力も示しました。例えば、2本腕ロボットで学習したスキルが、人型ロボットでも特別な調整なしに機能します。これにより、新しいロボットへのスキル展開が加速し、知能化と汎用化が大きく進むと期待されます。 Google DeepMindは責任ある開発も重視しています。行動前に安全性を考慮する思考プロセスを組み込み、同社のAI原則に準拠。安全性評価ベンチマークASIMOV」を更新し、新モデルが高い安全性能を示すことを確認しました。物理世界でのAIエージェントの安全な展開を目指します。 思考モデル「Gemini Robotics-ER 1.5」は、Google AI StudioのGemini API経由で開発者向けに提供が開始されました。これにより、物理世界で機能するAIエージェントの構築が促進されます。同社はこれを、物理世界での汎用人工知能(AGI)実現に向けた重要な一歩と位置付けています。

LLMの情報漏洩対策、準同型暗号でデータを秘匿したまま処理

プライバシー技術専門企業のDuality社は、大規模言語モデル(LLM)への問い合わせを秘匿したまま処理するフレームワークを開発しました。データを暗号化したまま計算できる完全準同型暗号(FHE)という技術を活用し、ユーザーの質問とLLMの回答をすべて暗号化します。これにより、企業の機密情報や個人情報を含むやり取りでも、情報漏洩リスクを懸念することなくLLMの恩恵を受けられるようになります。 このフレームワークの核心は、FHEによるエンドツーエンドの機密性保護です。ユーザーが入力したプロンプトはまずFHEで暗号化され、LLMに送信されます。LLMはデータを復号することなく暗号化された状態で処理を行い、生成した回答も暗号化したままユーザーに返します。最終的な結果は、ユーザーの手元でのみ復号されるため、途中でデータが盗み見られる心配がありません。 Duality社が開発したプロトタイプは、現在GoogleのBERTモデルなど、比較的小規模なモデルに対応しています。FHEとLLMの互換性を確保するため、一部の複雑な数学関数を近似値に置き換えるなどの調整が施されています。しかし、この変更によってもモデルの再トレーニングは不要で、通常のLLMと同様に機能する点が特長です。 FHEは量子コンピュータにも耐えうる高い安全性を誇る一方、大きな課題も抱えています。それは計算速度の遅さです。暗号化によってデータサイズが膨張し、大量のメモリを消費します。また、暗号文のノイズを定期的に除去する「ブートストラッピング」という処理も計算負荷が高く、実用化のボトルネックとなってきました。 Duality社はこれらの課題に対し、アルゴリズムの改良で挑んでいます。特に機械学習に適した「CKKS」というFHE方式を改善し、効率的な計算を実現しました。同社はこの技術をオープンソースライブラリ「OpenFHE」で公開しており、コミュニティと連携して技術の発展を加速させています。 アルゴリズムの改良に加え、ハードウェアによる高速化も重要な鍵となります。GPUASIC(特定用途向け集積回路)といった専用ハードウェアを活用することで、FHEの処理速度を100倍から1000倍に向上させることが可能だとされています。Duality社もこの点を重視し、OpenFHEにハードウェアを切り替えられる設計を取り入れています。 FHEで保護されたLLMは、様々な分野で革新をもたらす可能性があります。例えば、医療分野では個人情報を秘匿したまま臨床結果を分析したり、金融機関では口座情報を明かすことなく不正検知を行ったりできます。機密データをクラウドで安全に扱う道も開かれ、AI活用の可能性が大きく広がるでしょう。