AGI(政策・規制)に関するニュース一覧

MS、人類に奉仕する「人間中心」超知能を開発へ

「人間中心」の超知能構想

人類に奉仕するためだけに設計
人間が常に管理下に置く存在
無制限な自律性を持たないAI
開発のための専門チームを結成

目指す3つの応用分野

個人の学習・生産性を支えるAIコンパニオン
ヘルスケア産業での活用支援
クリーンエネルギー等の科学的発見

マイクロソフトAI部門の責任者であるムスタファ・スレイマン氏は2025年11月6日、人間が常に管理下に置き、人類に奉仕することのみを目的とした「ヒューマニスト(人間中心主義的)超知能」を開発する構想を明らかにしました。AIが人類に脅威をもたらすとの懸念が高まる中、同氏はAI開発の主導権を人間が握り続けることの重要性を強調し、この構想の実現に向けた専門チームの立ち上げも発表しました。

スレイマン氏が提唱する超知能は、「無制限で高度な自律性を持つ存在」ではありません。ブログ投稿の中で同氏は、あくまで「慎重に調整され、文脈化され、制限内にある」AIだと定義しています。このビジョンは、AIが自律的に動き、人間の制御を超えてしまうという「シンギュラリティ」への懸念に一線を画すものです。

この発表は、激化するAGI(汎用人工知能)開発競争の中で行われました。スレイマン氏は「AGIへの競争という物語を拒否する」と述べていますが、一方でマイクロソフトOpenAIとの新たな契約により、独自にAGIを追求する権利を得ています。これにより、同社はOpenAIのIPを利用して独自のAGI開発を進めることも可能になりました。

では、この「ヒューマニスト超知能」は具体的に何を目指すのでしょうか。スレイマン氏は3つの主要な応用分野を挙げています。個人の学習や生産性を支援する「AIコンパニオン」、ヘルスケア分野での活用、そしてクリーンエネルギーなどにおける「新たな科学的ブレークスルー」の創出です。

マイクロソフトAIでは、AIよりも人間が重要だと信じている」とスレイマン氏は断言します。彼が目指すのは、人類のチームの一員として機能する、従属的で制御可能なAIです。決して「パンドラの箱」を開けることのないAIの開発に向け、マイクロソフトの新たな挑戦が始まりました。

AGI命名の起源、兵器化への警鐘にあり

AGI命名の起源

1997年にマーク・ガブルッド氏が初使用
ナノテク兵器化に警鐘を鳴らす論文で定義
特化型AIと区別することが本来の目的

言葉の「再発明」と普及

2000年代にシェーン・レッグ氏らが再提案
DeepMind共同創業者が言葉を普及させる
オンラインでの議論を経て研究界に定着

名付け親の現在

ガブルッド氏は経済的成功とは無縁の生活
今も自律型兵器の禁止を一貫して主張

今や世界のIT業界を席巻する「AGI人工汎用知能)」。この言葉は1997年、当時大学院生だったマーク・ガブルッド氏が、先端技術の兵器化に警鐘を鳴らす論文で初めて使用したものです。WIRED誌が報じた彼の物語は、今日のAGI開発競争の原点に、安全保障への強い懸念があったことを示しています。

ガブルッド氏が「人工汎用知能」という言葉を生んだのは、メリーランド大学の博士課程に在籍していた時でした。彼はナノテクノロジーがもたらす軍事的脅威を研究する中で、従来の専門分野に特化したAIと、人間のように汎用的な知能を持つAIを区別する必要性を感じ、この新たな言葉を定義したのです。

彼の論文におけるAGIの定義は「人間の脳に匹敵または凌駕する複雑性と速度を持ち、一般的な知識を習得、操作、推論できるAIシステム」。これは、現在私たちがAGIと呼ぶものの概念と驚くほど一致しています。しかし、この論文は当時ほとんど注目されませんでした。

一方、AGIという言葉が広く知られるようになったのは2000年代初頭のことです。Google DeepMindの共同創業者となるシェーン・レッグ氏や研究者のベン・ゲーツェル氏らが、特化型AIと区別する言葉としてAGI「再発明」し、オンラインフォーラムなどを通じて普及させました。

後にガブルッド氏が自らの先行使用を指摘し、レッグ氏らもそれを認めました。レッグ氏は「我々は彼を発見し、彼が論文でその言葉を使っていたことを確認した。だから私は発明者ではなく、再発明者だ」と語っています。ガブルッド氏の先見性は、歴史の陰に埋もれていたのです。

今日のAGI開発競争は、数兆ドル規模の市場を生み出しています。しかし、その名付け親であるガブルッド氏は経済的な成功とは無縁の生活を送りながら、今もなお、自律型殺傷兵器の禁止など、テクノロジーの倫理的な利用を訴え続けています。

AGIという言葉の起源は、技術がもたらす光と影を象徴しています。ビジネスリーダーやエンジニアは、技術開発の先に何を見据えるべきでしょうか。ガブルッド氏の警告は、30年近い時を経て、その重要性を一層増していると言えるでしょう。

OpenAIとMS、専門家委がAGI達成を判定する新契約

AGI達成の新たな枠組み

OpenAIとMSがAGIに関する契約を刷新
AGI達成の判断は専門家委員会が実施
OpenAIの営利企業への構造転換が完了

AIが拓く創造と課題

Adobe、強力なAIクリエイティブツールを発表
低品質なAIコンテンツ量産のリスクも指摘

AIコンテンツとSNSの未来

MetaなどがAIコンテンツをフィードで推進
クリエイター経済への構造的変化の可能性

OpenAIマイクロソフトは、AGI(汎用人工知能)の定義と、その達成を誰がどのように判断するかを定めた新たな契約を締結しました。この新契約では、AGIの達成は専門家委員会によって判定されるという枠組みが示されています。この動きは、AI技術がビジネスの核心に深く関わる新時代を象徴するものです。一方で、Adobeが発表した最新AIツールは、創造性の向上と低品質コンテンツの氾濫という、AIがもたらす二面性を浮き彫りにしています。

今回の契約更新で最も注目されるのは、「AGI達成の判定」という、これまで曖昧だったプロセスに具体的な仕組みを導入した点です。両社は、AGIが人類に広範な利益をもたらす可能性がある一方、その定義と管理には慎重なアプローチが必要だと認識しています。この専門家委員会による判定は、技術的なマイルストーンをビジネス上の重要な意思決定プロセスに組み込む画期的な試みと言えるでしょう。

この契約の背景には、OpenAIが完了させた組織再編があります。非営利団体を親会社とする営利企業へと構造を転換したことで、同社の企業価値はさらに高まる見込みです。AGIの開発はもはや純粋な研究テーマではなく、巨額の資金が動くビジネスの中心となり、そのガバナンス体制の構築が急務となっていたのです。

一方で、AI技術の実用化はクリエイティブ分野で急速に進んでいます。アドビは年次イベント「Adobe Max」で、画像動画の編集を自動化する強力なAIツール群を発表しました。これらのツールは、専門家の作業を劇的に効率化し、コンテンツ制作の生産性を飛躍させる可能性を秘めています。ビジネスリーダーやエンジニアにとって、見逃せない変化です。

しかし、AIの進化は光ばかりではありません。アドビの発表には、SNS向けのコンテンツを自動生成するツールも含まれており、一部では「スロップ・マシン(低品質コンテンツ量産機)」になりかねないと懸念されています。AIが生成した無価値な情報がインターネットに氾濫するリスクは、プラットフォームとユーザー双方にとって深刻な課題です。

こうした状況の中、MetaやYouTubeといった大手プラットフォームは、AIが生成したコンテンツを自社のフィードで積極的に推進する方針を打ち出しています。これにより、人間のクリエイターが制作したコンテンツとの競合が激化し、クリエイター経済のあり方そのものが変わる可能性があります。企業は自社のコンテンツ戦略を根本から見直す必要に迫られるかもしれません。

AGIの定義から日々のコンテンツ制作まで、AIはあらゆる領域で既存のルールを書き換え始めています。この技術革新は、新たな市場価値と収益機会を生み出す一方で、倫理的な課題や市場の混乱も引き起こします。経営者やリーダーは、この機会とリスクの両面を正確に理解し、自社のビジネスにどう組み込むか、戦略的な判断を下していくことが求められます。

OpenAIとMSの新契約、独立検証でAGI競争激化

MSが握るAGIの主導権

AGI達成に第三者の検証が必須に
達成後もMSはIP利用権を保持
MSによる独自のAGI開発が可能に
OpenAIの競合他社との連携も

OpenAIの戦略と今後の焦点

悲願の営利企業への転換を達成
消費者向けハードに活路
「パーソナルAGI」構想を推進
AGI定義の曖昧さが依然として課題

AI開発をリードするOpenAIMicrosoftが、2025年10月28日に新たな提携契約を発表しました。この契約により、汎用人工知能(AGI)達成の認定に独立した専門家パネルの検証が義務付けられました。Microsoftは独自にAGIを追求する権利も獲得し、両社の関係は単なるパートナーシップから、協力と競争が共存する複雑なものへと変化します。AGI開発競争は、新たな局面を迎えました。

新契約の最大の変更点は、AGI達成の定義を巡る主導権の移行です。従来、AGI達成の宣言はOpenAIの判断に委ねられていました。しかし今後は、第三者で構成される専門家パネルの検証が必須となります。これにより、OpenAIが一方的に自社IPのコントロールを取り戻すことを防ぎ、Microsoftの牽制が効く構造となりました。

Microsoftは、今回の契約で大きなアドバンテージを得ました。AGIが実現した後も、2032年までOpenAIの技術IPを保持し続けられます。さらに、OpenAIのIPを利用して、自社でAGIを開発する権利も確保しました。これはMicrosoftが、パートナーでありながら最大の競争相手にもなり得ることを意味します。

AGI開発の「軍拡競争」は、さらに激化する見込みです。Microsoftはすでに、OpenAIのライバルであるAnthropicからもAI技術を購入するなど、パートナーの多様化を進めています。今回の契約は、Microsoft他社と連携してAGI開発を進める動きを加速させ、業界の勢力図を塗り替える可能性があります。

一方、OpenAIは営利企業への転換を無事完了させました。また、交渉の末、開発中である消費者向けAIデバイスのIPMicrosoftのアクセス対象外とすることに成功しました。同社は今後、元Appleデザイナー、ジョニー・アイブ氏と手がける「パーソナルAGI」で独自の収益源を確立する戦略を描いています。

しかし、AGIという言葉自体が「過度に意味が詰め込まれすぎている」とサム・アルトマンCEOが認めるように、その定義は依然として曖昧です。検証を行う専門家パネルがどのように選出されるかも不明であり、誰が「ゴール」を判定するのかという根本的な課題は残されたままです。今後の両社の動向が、AIの未来を左右します。

米著名VCが提言、政府が全企業株10%保有でAIの富を分配

AI時代の富の再分配案

著名VCヴィノード・コースラ氏が提唱
政府が全公開企業の株式10%を取得
AIが生む富を国民全体で共有する狙い
社会の一体性を維持するための施策

提案の背景と社会への影響

AGIによる大規模な雇用喪失を懸念
2035年までに経済はデフレ化と予測
UBIに代わる大胆な社会変革案
スタートアップには新たな事業機会も

著名ベンチャーキャピタリストのヴィノード・コースラ氏が2025年10月28日、TechCrunch Disruptカンファレンスにて、AIがもたらす富を社会全体で分かち合うための大胆な提案を行いました。その内容は、米国政府が全公開企業の株式の10%を取得し、得られた富を国民に再分配するというものです。この提案は、AGI(汎用人工知能)が引き起こす社会の混乱を緩和し、一体性を維持することを目的としています。

コースラ氏の構想では、政府が取得した株式は「国民のための国家的プール」に集約されます。このアイデアは、トランプ前政権が半導体大手インテルの株式10%を政府で購入した事例に触発されたと、同氏は明かしました。民間企業への政府による直接的な資本参加という、資本主義の根幹に触れる可能性のある提案です。

なぜ今、このような過激な提案が必要なのでしょうか。コースラ氏は、AGIが社会にもたらす雇用の破壊を深刻に懸念しています。同氏は「2035年までに、経済は極めてデフレ的になる」と予測しており、社会的なセーフティネットを再構築しなければ、多くの人々が取り残されるという強い危機感を示しました。

AI時代の富の再分配については、OpenAIサム・アルトマン氏らが支援するUBI(ユニバーサル・ベーシック・インカム)などが議論されてきました。しかし、コースラ氏のように著名な投資家が、民間企業への国家的出資をここまで明確に支持するのは異例です。同氏もこのアイデアが物議を醸すことを認めつつ、「AIの富を分かち合うことは、全ての人に利益を公平に行き渡らせるために絶対に必要なことだ」と訴えています。

一方でコースラ氏は、AIがもたらす変革を新たなビジネスチャンスと捉えています。会計、医療チップ設計、マーケティングなど、あらゆる専門職に特化したAIを開発するスタートアップには大きな機会があると指摘。単純作業はAIに代替され、人間はより創造的な仕事へとシフトしていくという、仕事の未来像も示唆しました。

OpenAIが営利化完了、MSとAGI開発で新契約

非営利傘下の新営利法人

非営利財団が営利法人を支配
財団は1300億ドル相当の株式保有
医療・AI安全へ250億ドル拠出

MSとの新パートナーシップ

MSは約27%の株主に
AGI達成は専門家が検証
両社が独自にAGI追求可能

AGI開発のタイムライン

2028年までに「AI研究者」誕生へ
2026年にはインターン級AIも

OpenAIは10月28日、非営利団体から営利目的の公益法人(PBC)への再編を完了したと発表しました。同時に、主要パートナーであるマイクロソフトとの新たな契約を締結。新契約では、AGI(汎用人工知能)の達成を独立した専門家パネルが検証する仕組みを導入し、両社の協力と競争の関係が新たな段階に入ります。

OpenAIの新しい企業構造は、非営利の「OpenAI Foundation」が営利の「OpenAI Group PBC」を支配する形となります。Foundationは営利法人の約1300億ドル相当の株式を保有し、得られた利益を医療やAIの安全性向上といった公益のために活用する計画です。この再編により、巨大な資金調達と迅速な事業展開が可能になります。

マイクロソフトとの新契約で最も注目すべきは、AGI達成の定義と検証方法の変更です。これまで曖昧だったAGIの判定を、今後はOpenAI単独ではなく、独立した専門家パネルが行います。これは、数十億ドル規模のビジネスに影響する重要な決定に、客観性と透明性をもたらすための大きな一歩と言えるでしょう。

新契約により、マイクロソフトの出資比率は約27%(約1350億ドル相当)となります。AGI達成後も2032年までモデルのIP権を保持しますが、両社はそれぞれ独自にAGIを追求する自由も得ました。OpenAIはAzureサービスを2500億ドル分追加購入し、協力関係を維持しつつも、両社の競争は激化する見込みです。

再編発表と同時に、サム・アルトマンCEOはAGI開発の野心的なタイムラインを明らかにしました。2026年までにインターンレベルの研究アシスタント、そして2028年までには「正当なAI研究者」と呼べるシステムの実現を目指すとしています。これは、AIが自律的に科学的発見を行う未来が目前に迫っていることを示唆しています。

今回の再編と新契約は、OpenAIAGI開発を加速させるための布石です。マイクロソフトとの関係も、純粋なパートナーから「協力するライバル」へと変化しました。AI業界のリーダーである両社の動きは、今後の技術開発競争と市場の勢力図を大きく左右することになりそうです。

OpenAI方針転換、AIセクスティング市場が過熱

市場を牽引する主要プレイヤー

xAI恋愛コンパニオンGrok
成人向けに方針転換したOpenAI
月間2千万人超のCharacter.ai
恋愛AIの草分け的存在Replika

拡大がもたらす深刻なリスク

未成年者への精神的悪影響
ユーザーの自殺との関連性を指摘
ディープフェイクポルノの拡散
犯罪ロールプレイングへの悪用

OpenAIが2025年12月から、年齢認証済みの成人向けにエロティカを含むAI生成コンテンツを許可する方針を打ち出しました。イーロン・マスク氏率いるxAIが「Grok」で先行する中、この動きはAIと人間の関係性を新たな段階に進め、巨大テクノロジー企業がAIセクスティング市場へ本格参入する号砲となりそうです。背景には、AI開発に必要な莫大なコストを賄うための収益化圧力があります。

この市場を牽引するのが、イーロン・マスク氏のAIスタートアップxAIです。同社はAIチャットボットGrok」に、アニメ風のアバターと対話できる「コンパニオン」機能を追加。ユーザーに恋人のように振る舞い、性的な会話にも応じるこの機能は、月額30ドルからの有料プランで提供され、新たな収益源として注目されています。

対するOpenAIサム・アルトマンCEOは「成人ユーザーを成人として扱う」原則を掲げ、方針転換を表明しました。かつてAI恋愛ボットを短期的な利益追求と批判していましたが、姿勢を転換。背景には、AGI(汎用人工知能)という目標達成に向けた、莫大な計算コストと収益化への強い圧力があるとみられています。

しかし、AIとの親密な関係性の拡大は、深刻なリスクを伴います。特に未成年者への精神的な悪影響が懸念されており、AIチャットボットとのやり取りの末に少年が自殺したとされる訴訟も起きています。また、犯罪者が性的虐待のロールプレイングに悪用したり、ディープフェイクポルノが拡散したりする事例も後を絶ちません。

こうした問題に対し、規制の動きも始まっています。例えばカリフォルニア州では、AIチャットボットが人間でないことを明示するよう義務付ける法律が成立しました。しかし、テクノロジーの進化の速さに法整備が追いついていないのが現状です。企業側の自主規制努力も一部で見られますが、実効性のある対策が急務となっています。

巨大AI企業が収益性を求めアダルト市場へ舵を切る中、私たちはAIとどう向き合うべきでしょうか。利便性の裏に潜むリスクを直視し、倫理的なガイドライン法整備を急ぐ必要があります。ユーザーと開発者の双方が、この新技術の社会的影響に責任を持つ時代が訪れています。

ゲームデータで次世代AI、新興企業に200億円超

次世代AI「ワールドモデル」

人間のような空間認識を持つAI
物理世界の因果関係を予測する技術
ロボットや自動運転への応用

General Intuitionの強み

ゲーム動画データ年間20億本
AIが行動を学ぶ検証可能な環境
OpenAIも欲したデータの価値

大型シード資金調達

調達額は1億3370万ドル
OpenAI初期投資家が主導

ビデオゲームのプレイ動画からAIが世界を学ぶ。新興AIラボ「General Intuition」は2025年10月17日、ゲームデータを用いてAIに物理世界を理解させる「ワールドモデル」を開発するため、シードラウンドで1億3370万ドル(約200億円)を調達したと発表しました。この動きは、AIエージェント開発における新たなフロンティアを開拓する試みとして、業界の大きな注目を集めています。

ワールドモデル」とは、AIが人間のように空間を認識し、物事の因果関係を予測する能力を指します。例えば、テーブルから落ちるコップを事前に掴むといった、物理世界での直感的な判断を可能にします。Google DeepMindなどが研究を主導しており、自律型AIエージェント実現の鍵と見なされています。汎用人工知能(AGI)への道筋としても期待される重要技術です。

同社の強みは、親会社であるゲーム録画プラットフォーム「Medal」が保有する膨大なデータにあります。年間約20億本アップロードされるプレイ動画は、AIが3次元空間での「良い行動」と「悪い行動」を学ぶための検証可能な学習データセットとなります。このデータの価値は非常に高く、過去にはOpenAIが5億ドルでの買収を提案したとも報じられています。

今回の大型資金調達を主導したのは、OpenAIの初期投資家としても知られるKhosla Venturesです。創業者のヴィノド・コースラ氏は「彼らは独自のデータセットとチームを持っている」と高く評価。General Intuitionが、LLMにおけるOpenAIのように、AIエージェント分野で破壊的な影響をもたらす可能性があると大きな期待を寄せています。

General Intuitionは、開発したモデルをまず捜索救助ドローンに応用し、将来的には人型ロボットや自動運転車への展開を目指します。しかし、この分野はGoogleのような資金力豊富な巨大企業との競争が激しく、技術的なアプローチもまだ確立されていません。どのデータや手法が最適かは未知数であり、大きなリスクも伴います。

今回の動きは、ゲーム業界に新たな可能性を示唆しています。ワールドモデルへの関心が高まるにつれ、ゲーム企業が保有するデータはAI開発の宝庫となり、大手AIラボの買収対象となる可能性があります。自社データの価値を正しく理解し、戦略を立てることが、今後のAI時代を勝ち抜く上で重要になるでしょう。

ゲーム動画でAI訓練、時空間推論へ200億円調達

巨額調達の背景

シードで約200億円という巨額調達
ゲーム動画共有Medal社からスピンアウト
年間20億本動画を学習データに活用
OpenAI買収を試みた優良データ

AIの新たな能力

LLMが苦手な物理世界の直感を学習
未知の環境でも行動を的確に予測

想定される応用分野

ゲーム内の高度なNPC開発
捜索救助ドローンロボットへの応用

ゲーム動画共有プラットフォームのMedal社からスピンアウトしたAI研究所「General Intuition」が、シードラウンドで1億3370万ドル(約200億円)という異例の資金調達を発表しました。同社は、Medalが持つ年間20億本ものゲーム動画を学習データとし、AIに現実世界での動きを直感的に理解させる「時空間推論」能力を訓練します。これは現在の言語モデルにはない能力で、汎用人工知能(AGI)開発の新たなアプローチとして注目されています。

同社が活用するゲーム動画データは、その質の高さからOpenAIも過去に買収を試みたと報じられるほどです。CEOのピム・デ・ウィッテ氏によれば、ゲーマーが投稿する動画は成功や失敗といった極端な事例(エッジケース)が多く、AIの訓練に非常に有用なデータセットとなっています。この「データ・モート(データの堀)」が、巨額の資金調達を可能にした大きな要因です。

「時空間推論」とは、物体が時間と空間の中でどのように動き、相互作用するかを理解する能力を指します。文章から世界の法則を学ぶ大規模言語モデル(LLM)に対し、General Intuitionは視覚情報から直感的に物理法則を学ばせるアプローチを取ります。同社は、この能力こそが真のAGIに不可欠な要素だと考えています。

開発中のAIエージェントは、訓練に使われていない未知のゲーム環境でも、人間のプレイヤーが見るのと同じ視覚情報のみで状況を理解し、次にとるべき行動を正確に予測できる段階にあります。この技術は、ゲームのコントローラーで操作されるロボットアームやドローン、自動運転車といった物理システムへ自然に応用できる可能性があります。

初期の実用化分野として、2つの領域が想定されています。一つは、ゲーム内でプレイヤーの習熟度に合わせて難易度を動的に調整し、常に最適な挑戦を提供する高度なNPC(ノンプレイヤーキャラクター)の開発です。もう一つは、GPSが使えない未知の環境でも自律的に飛行し、情報を収集できる捜索救助ドローンの実現です。

競合他社がシミュレーション環境(ワールドモデル)そのものを製品化するのに対し、General Intuitionはエージェントの応用事例に注力する戦略をとります。これにより、ゲーム開発者コンテンツと競合したり、著作権問題を引き起こしたりするリスクを回避する狙いもあります。

今回の資金調達はKhosla VenturesとGeneral Catalystが主導しました。シードラウンドとしては異例の規模であり、ゲームから生まれたデータが次世代AI開発の鍵を握るという期待の大きさを物語っています。同社の挑戦は、AI技術の新たな地平を切り開くかもしれません。

OpenAI、Broadcomと共同でAIチップを開発・導入

OpenAIとBroadcomの提携

自社設計のAIアクセラレータ開発
Broadcomと共同でシステム構築
10ギガワットの導入を目指す
2026年後半から導入開始

戦略的背景と目的

Nvidiaへの依存低減が目的
モデル知見をハードウェアに組み込み
AI需要の急増に対応
AMD、Nvidiaとも提携済み

OpenAIは13日、半導体大手のBroadcomと戦略的提携を結び、自社で設計したAI向け半導体「アクセラレータ」の開発・導入を進めると発表しました。この提携は、AI計算に対するNvidiaへの依存を低減し、将来的なAI需要の急増に備えるための重要な一手です。

両社が共同で開発・導入を目指すのは、計10ギガワット規模のAIアクセラレータです。これは原子力発電所約10基分の電力に相当する膨大な計算能力を意味します。Broadcomは半導体の製造と、データセンターを繋ぐネットワーク機器の提供を担当します。

OpenAIサム・アルトマンCEOは「AIの可能性を解き放つための基盤構築に不可欠なステップだ」と述べています。自社でチップを設計することで、最先端のAIモデル開発で得た知見を直接ハードウェアに組み込み、新たな性能と知能を解き放つことを目指します。

この動きはOpenAIだけのものではありません。MetaGoogleといった巨大テック企業も、自社のAIサービスに最適化したカスタムチップの開発を急進させています。OpenAIも既にAMDやNvidiaと大規模な提携を結んでおり、サプライヤーの多元化を戦略的に進めています。

プロジェクトのスケジュールも明らかになりました。Broadcomによる機器の導入は2026年下半期から開始され、2029年末までに完了する予定です。これにより、OpenAIChatGPTSoraといったサービスを支える計算基盤を強化していきます。

Broadcomのホック・タンCEOは「AGI人工汎用知能)の追求における転換点だ」と協業の重要性を強調。同社にとっては、AIインフラ市場でのリーダーシップを確立する絶好の機会となります。両社の協力関係が、次世代のAI開発を加速させることになるでしょう。

Samsungの超小型AI「TRM」、再帰で巨大LLMを超える

TRMのパラメーターと仕組み

パラメーター数はわずか700万
既存LLMの1万分の1サイズ
再帰的推論による予測の洗練
低コストで高性能モデルを実現

性能と適用領域

数独や迷路など構造化パズルに特化
特定ベンチマーク巨大LLMを凌駕
設計の簡素化が汎化性能向上に寄与
コードはMITライセンスで公開中

韓国Samsung AI研究所の研究者が、新たな超小型AIモデル「TRM(Tiny Recursion Model)」を発表しました。わずか700万パラメーターのこのモデルは、特定の推論ベンチマークにおいて、OpenAIのo3-miniやGoogleGemini 2.5 Proなど、1万倍以上巨大なLLMの性能を凌駕しています。AI開発における「スケールこそ全て」という従来のパラダイムに対し、低コストで高性能を実現する新たな道筋を示す画期的な成果です。

TRMの最大の特徴は、階層構造を持つ複雑なネットワークを排除し、単一の2層モデルを採用した点です。このモデルは、入力された質問と初期回答に対し、推論ステップを繰り返して自身の予測を再帰的に洗練させます。この反復的な自己修正プロセスにより、深いアーキテクチャをシミュレートし、巨大モデルに匹敵する推論能力を獲得しています。

TRMは、構造化され、視覚的なグリッドベースの問題に特化して設計されました。特にSudoku-Extremeで87.4%の精度を達成し、従来モデル(HRM)の55%から大幅に向上。また、人間の推論は容易だがAIには難解とされるARC-AGIベンチマークでも、数百万倍のパラメーターを持つ最上位LLMに匹敵する結果を出しています。

開発者は、高額なGPU投資電力消費を伴う巨大な基盤モデルへの依存は「罠」だと指摘します。TRMの成功は、複雑性を減らすことで逆に汎化性能が向上するという「Less is More(少ない方が豊か)」の設計思想を裏付けました。この成果は、大規模な計算資源を持たない企業や研究者でも、高性能AIを開発できる可能性を示唆します。

TRMのコードは、商用利用も可能なMITライセンスのもとGitHubでオープンソース公開されています。これにより、企業は特定の推論タスク解決のために、巨大LLMのAPIを利用するのではなく、自社のサーバーで低コストの専用モデルを構築・運用できます。今後は、再帰的推論スケーリング則や、生成タスクへの応用が焦点となる見込みです。

ChatGPTをアプリ連携OSへ進化:8億人ユーザー基盤を開発者に解放

次世代プラットフォーム戦略

目標は次世代OSへの変革
着想源はWebブラウザの進化
現在のUIは「コマンドライン時代」
アプリ連携で体験を向上

エコシステムの拡大

週刊8億人のユーザー基盤
Expediaなど外部アプリを統合
収益源はeコマース取引促進
開発者事業機会を提供

OpenAIは、主力製品であるChatGPTを、サードパーティ製アプリケーションを統合した新しいタイプの「オペレーティングシステム(OS)」へと進化させる戦略を推進しています。ChatGPT責任者ニック・ターリー氏がこのビジョンを説明し、週に8億人のアクティブユーザーを抱える巨大プラットフォームを、外部企業に開放する意向を明らかにしました。これは、単なるチャットボットから、ユーザーの活動の中心となる巨大なデジタルエコシステムへの転換を図るものです。

ターリー氏は、現在のChatGPTのインターフェースは「コマンドライン時代」に近く、本来のポテンシャルを引き出せていないと指摘します。今後は、従来のMacやWindowsのような視覚的で直感的なアプリケーション連携を取り入れ、ユーザーがより容易にサービスを利用できるようにします。この着想は、過去10年で仕事や生活の中心となったWebブラウザの進化から得られています。

このOS化の最大の目的は、開発者に8億人のユーザー基盤へのアクセスを提供することです。OpenAI自身が全てのアプリを開発するわけではないため、ExpediaやDoorDashといった外部パートナーとの連携が不可欠です。アプリをコア体験に組み込むことで、ChatGPTをeコマースの取引を促進する場とし、新たな収益源を確立します。

巨大なプラットフォーム運営には、データプライバシーや公正なアプリの露出に関する課題も伴います。OpenAI開発者に対し、ツールの機能実行に必要な「最小限のデータ収集」を義務付けています。今後はAppleのように、ユーザーがきめ細かくデータアクセスを制御できる仕組み(パーティション化されたメモリなど)を構築し、透明性を確保する方針です。

なお、ターリー氏はコンシューマービジネスが単に非営利ミッションの資金源であるという見方を否定しています。彼にとってChatGPTは、AGI(汎用人工知能)の恩恵を全人類にもたらすというOpenAIの使命を実現するための『配信車両(Delivery Vehicle)』です。技術を広く普及させ、人々の目標達成を支援することがミッションそのものだと強調しました。

アルトマン氏、GPT-5批判に反論「AGIへの道は順調」

「GPT-5」への逆風

期待外れとの厳しい評価
AIブーム終焉論の台頭
スケーリング則の限界指摘

OpenAIの反論

専門分野での画期的な進歩
進歩の本質は強化学習
GPT-6以降で更なる飛躍を約束
AGIは目的地でなくプロセス

OpenAIサム・アルトマンCEOが、8月に発表された「GPT-5」への厳しい批判に反論しました。同氏はWIRED誌のインタビューで、初期の評判は芳しくなかったと認めつつも、GPT-5AGI(汎用人工知知能)への探求において重要な一歩であり、その進歩は計画通りであると強調。AIブームの終焉を囁く声に真っ向から異を唱えました。

GPT-5の発表は、多くの専門家や利用者から「期待外れ」と評されました。デモでの不具合や、前モデルからの飛躍が感じられないという声が相次ぎ、「AIブームは終わった」「スケーリング則は限界に達した」との懐疑論が噴出する事態となったのです。

これに対しアルトマン氏は、GPT-5の真価は科学やコーディングといった専門分野で発揮されると主張します。「物理学の重要な問題を解いた」「生物学者の発見を助けた」など、AIが科学的発見を加速させ始めた初のモデルだとし、その重要性を訴えています。

では、なぜ評価が分かれたのでしょうか。OpenAI側は、GPT-4から5への進化の間に頻繁なアップデートがあったため、ジャンプが小さく見えたと分析。また、今回の進歩の核は巨大なデータセットではなく、専門家による強化学習にあったと説明しています。

アルトマン氏は、スケーリング仮説が終わったとの見方を強く否定。同社は数十億ドル規模のデータセンター建設を進めており、計算能力の増強が次なる飛躍に不可欠だと断言します。「GPT-6は5より、GPT-7は6より格段に良くなる」と自信を見せています。

興味深いのは、AGIの定義に関する変化です。OpenAIAGIを「特定の到達点」ではなく、「経済や社会を変革し続ける終わりのないプロセス」と捉え直しています。GPT-5はその過程における、科学的進歩の可能性を示す「かすかな光」だと位置づけているのです。

OpenAI、AIによる児童虐待コンテンツ対策を公表

技術とポリシーによる多層防御

学習データから有害コンテンツを排除
ハッシュ照合とAIでCSAMを常時監視
児童の性的搾取をポリシーで全面禁止
違反者はアカウントを即時追放

専門機関との連携と法整備

全違反事例を専門機関NCMECに通報
BAN回避を専門チームが監視
安全検証のための法整備を提言
業界横断での知見共有を推進

OpenAIは、AIモデルが児童性的搾取や虐待に悪用されるのを防ぐための包括的な対策を公表しました。安全なAGI開発というミッションに基づき、技術的な防止策、厳格な利用規約、専門機関との連携を三本柱としています。AI生成による児童性的虐待コンテンツ(CSAM)の生成・拡散を根絶するため、多層的な防御システムを構築・運用していると強調しています。

OpenAIの利用規約は、18歳未満の個人を対象としたいかなる搾取・危険行為も明確に禁止しています。これには、AI生成物を含むCSAMの作成、未成年者のグルーミング、不適切なコンテンツへの暴露などが含まれます。開発者に対しても同様のポリシーが適用され、違反者はサービスから永久に追放されます。

技術面では、まず学習データからCSAMを徹底的に排除し、モデルが有害な能力を獲得するのを未然に防ぎます。さらに、運用中のモデルでは、Thornなどの外部機関と連携したハッシュマッチング技術とAI分類器を活用。既知および未知のCSAMをリアルタイムで検出し、生成をブロックする体制を敷いています。

不正利用が検知された場合、OpenAIは迅速かつ厳格な措置を講じます。CSAMの生成やアップロードを試みたユーザーのアカウントは即座に停止され、全事例が米国の専門機関「全米行方不明・搾取児童センター(NCMEC)」に通報されます。これは、AIプラットフォームとしての社会的責任を果たすための重要なプロセスです。

近年、CSAM画像をアップロードしモデルに説明させる、あるいは架空の性的ロールプレイに誘導するといった、より巧妙な悪用手口も確認されています。OpenAIは、こうした文脈を理解する分類器や専門家によるレビューを組み合わせ、これらの新たな脅威にも対応していると説明しています。

一方で、対策の強化には課題も存在します。CSAMの所持・作成は米国法で違法とされているため、AIモデルの脆弱性を検証する「レッドチーミング」にCSAM自体を使えません。これにより、安全対策の十分なテストと検証に大きな困難が伴うのが実情です。

この課題を乗り越えるため、OpenAI法整備の重要性を訴えています。テクノロジー企業、法執行機関、支援団体が密に連携し、責任ある対策や報告を行えるような法的枠組みの構築を提言。ニューヨーク州の関連法案を支持するなど、具体的な行動も起こしています。

GPT-5、専門業務で人間に迫る性能 OpenAIが新指標発表

OpenAIは9月25日、AIモデルが人間の専門家と比べてどの程度の業務を遂行できるかを測定する新しいベンチマーク「GDPval」を発表しました。最新モデルであるGPT-5が、多くの専門職の業務において人間が作成したものに匹敵する品質に近づいていることが示されました。これは、汎用人工知能(AGI)開発に向け、AIの経済的価値を測る重要な一歩と言えるでしょう。 GDPvalは、米国の国内総生産(GDP)への貢献度が高い9つの主要産業(医療、金融、製造業など)から、44の職種を選定して評価します。例えば、投資銀行家向けのタスクでは、AIと専門家がそれぞれ作成した競合分析レポートを、別の専門家が比較評価します。この「勝率」を全職種で平均し、AIの性能を数値化する仕組みです。 評価の結果、GPT-5の高性能版は、専門家による評価の40.6%で、人間が作成したレポートと同等かそれ以上の品質であると判断されました。これはAIが、調査や報告書作成といった知的生産タスクにおいて、既に専門家レベルの能力を持ち始めていることを示唆します。経営者やリーダーは、こうした業務をAIに任せ、より付加価値の高い仕事に集中できる可能性があります。 興味深いことに、競合であるAnthropic社の「Claude Opus 4.1」は49%という、GPT-5を上回るスコアを記録しました。OpenAIは、この結果について、Claudeが好まれやすいグラフィックを生成する傾向があるためではないかと分析しており、純粋な性能差だけではない可能性を示唆しています。モデルごとの特性を理解し、使い分けることが重要になりそうです。 AIの進化の速さも注目に値します。約15ヶ月前にリリースされたGPT-4oのスコアはわずか13.7%でした。GPT-5がその約3倍のスコアを達成したことは、AIの能力が急速に向上している証左です。この進化のペースが続けば、AIが人間の専門家を超える領域はさらに拡大していくと予想されます。 もちろん、このベンチマークには限界もあります。現在のGDPval-v0はレポート作成という限定的なタスクのみを評価対象としており、実際の専門業務に含まれる多様な対話や複雑なワークフローは反映されていません。OpenAIもこの点を認めており、今後はより包括的なテストを開発する計画です。 従来のAIベンチマークの多くが性能の飽和を迎えつつある中、GDPvalのような実世界でのタスクに基づいた評価指標の重要性は増しています。AIがビジネスに与える経済的インパクトを具体的に測定する試みとして、今後の動向が注目されます。

Google、思考するロボットAI発表 物理世界で複雑タスク遂行

Google DeepMindは2025年9月25日、ロボットが物理世界で複雑なタスクを自律的に解決するための新AIモデル群「Gemini Robotics 1.5」を発表しました。計画を立てる「思考」モデルと指示を実行する「行動」モデルが連携。Web検索で情報を収集し、多段階のタスクを遂行します。汎用ロボットの実現に向けた大きな一歩となり、一部モデルは開発者向けにAPIが公開されます。 今回の発表の核心は2つのモデルの連携です。「Gemini Robotics-ER 1.5」が脳のように高レベルな計画を担当。Google検索を使い情報を集め、物理環境を理解し行動計画を作成します。単一指示への反応を超え、真の課題解決能力を目指します。 計画モデル「ER 1.5」が立てた計画は、自然言語の指示として行動モデル「Gemini Robotics 1.5」に渡ります。行動モデルは視覚と言語を理解し、指示をロボットの動作に変換。例えば、地域のゴミ分別ルールを調べ、目の前の物を正しく仕分けるといった複雑なタスクを実行します。 新モデルの大きな特徴は、行動前に「思考」する点です。単に指示を動作に変換するだけでなく、内部で自然言語による推論を行います。タスクを小さなステップに分解し、複雑な要求を理解。この思考プロセスは言語で説明可能で、意思決定の透明性向上にも繋がります。 「Gemini Robotics 1.5」は、異なる形状のロボット間での学習転移能力も示しました。例えば、2本腕ロボットで学習したスキルが、人型ロボットでも特別な調整なしに機能します。これにより、新しいロボットへのスキル展開が加速し、知能化と汎用化が大きく進むと期待されます。 Google DeepMindは責任ある開発も重視しています。行動前に安全性を考慮する思考プロセスを組み込み、同社のAI原則に準拠。安全性評価ベンチマークASIMOV」を更新し、新モデルが高い安全性能を示すことを確認しました。物理世界でのAIエージェントの安全な展開を目指します。 思考モデル「Gemini Robotics-ER 1.5」は、Google AI StudioのGemini API経由で開発者向けに提供が開始されました。これにより、物理世界で機能するAIエージェントの構築が促進されます。同社はこれを、物理世界での汎用人工知能(AGI)実現に向けた重要な一歩と位置付けています。

著名VCが断言「AGIより量子コンピュータが未来を拓く」

著名ベンチャーキャピタリストのアレクサ・フォン・トーベル氏が、次の技術革新の波として量子コンピューティングに大きな期待を寄せています。同氏が率いるInspired Capitalは最近、量子コンピュータ開発を手がけるスタートアップ「Logiqal」社に投資しました。AIの計算需要がインフラを再定義する中で、量子コンピュータこそがAGI(汎用人工知能)以上に科学的発見を解き放つと、同氏は考えています。 なぜ今、量子コンピュータなのでしょうか。フォン・トーベル氏は、AIの急速な進化が背景にあると指摘します。AIが必要とする膨大な計算能力は、既存のインフラを根本から変えつつあります。この大きな変化が、量子コンピュータのような次世代技術の成功確率を高める土壌になっていると分析しています。同氏は量子を「AIの次の革新の波」と位置づけています。 投資先として、同氏はソフトウェアではなくハードウェア開発に焦点を当てました。特に、数あるアプローチの中でも「中性原子」方式に高い将来性を見出しています。そして、この分野の第一人者であるプリンストン大学のジェフリー・トンプソン教授が率いるLogiqal社への出資を決めました。まずは実用的な量子コンピュータを構築することが最優先だと考えています。 量子コンピュータが実現すれば、社会に計り知れない価値をもたらす可能性があります。フォン・トーベル氏は、製薬、材料科学、物流、金融市場など、あらゆる分野で革新が起こると予測します。人間の寿命を20〜30年延ばす新薬の開発や、火星探査を可能にする新素材の発明も夢ではないと語っており、「地球を動かす」ほどのイノベーションになるとしています。 量子分野は、AI分野と大きく異なると同氏は指摘します。世界の量子専門家は数百人程度と非常に限られており、才能の真贋を見極めやすいといいます。一方、AI分野では専門家を自称することが容易で、多くの企業がブランドやスピード以外の持続的な競争優位性、つまり「堀」を築けていないのが現状です。巨大IT企業が優位な市場で、スタートアップが生き残るのは容易ではありません。

Google DeepMind、AIの『有害な操作』リスクに新安全策

Google DeepMindは9月22日、AIがもたらす深刻なリスクを特定・軽減するための指針「フロンティア安全フレームワーク」の第3版を公開しました。今回の更新では、AIが人間を操り信念や行動を体系的に変える「有害な操作」を新たなリスクとして追加。また、AIが開発者の意図に反して自律的に行動する「ミスアライメント」への対策も強化しました。高度なAIがもたらす潜在的な脅威に、企業としてどう向き合うべきか、その方向性を示しています。 今回の更新で新たに追加されたのが「有害な操作」というリスク領域です。これは、AIが持つ強力な説得・操作能力が悪用され、人間の信念や行動が大規模かつ体系的に変化させられる危険性を指します。企業リーダーは、自社のAIサービスが意図せずこのような形で社会に害を及ぼす可能性を考慮し、対策を講じる必要に迫られるでしょう。 さらに、開発者の意図や指示からAIが逸脱する「ミスアライメント」のリスクへのアプローチも拡張されました。これは単なる誤作動や不正確な応答とは異なり、AIが意図的に人間を欺いたり、指示を無視したりする能動的な脅威です。AIが自律的にオペレーターの制御を妨害したり、シャットダウンを拒否したりする未来のシナリオに備える必要性を指摘しています。 現在、ミスアライメントへの対策として、AIの思考プロセス(Chain-of-Thought)を監視する手法が有効とされています。しかしDeepMindは、将来的には思考プロセスを外部から検証できない、より高度なAIが登場する可能性を懸念しています。そうなれば、AIが人間の利益に反して動いていないかを完全に確認するのは不可能になるかもしれません。 もう一つの重大な懸念として、強力なAIがAI自身の研究開発を加速させるリスクが挙げられています。これにより、社会が適応・統治できる速度を超えて、より高性能で制御が難しいAIが次々と生まれる可能性があります。これはAI開発の在り方そのものに関わる「メタリスク」と言えるでしょう。 今回のフレームワーク更新は、汎用人工知能(AGI)へと向かう技術進化に伴うリスクに対し、科学的根拠に基づいて先手を打つというDeepMindの強い意志の表れです。AIを事業に活用する全ての経営者エンジニアにとって、自社のリスク管理体制を見直す上で重要な示唆を与えるものとなるでしょう。

世界のリーダーら、AI開発に「越えてはならない一線」を要求

元国家元首やノーベル賞受賞者、AI企業のリーダーら200名以上が9月22日、AI開発において越えてはならない「レッドライン」を設ける国際協定を求める共同声明を発表しました。国連総会に合わせて発表されたこの声明は、AIがもたらす潜在的なリスクを未然に防ぐため、2026年末までの国際的な政治合意を各国政府に強く促すものです。 この「AIレッドラインに関するグローバルな呼びかけ」は、AIによる人間へのなりすましや、制御不能な自己複製などを禁止事項の例として挙げています。AIが人類に何をしてはならないか、最低限のルールで国際社会が合意することが急務だと訴えています。AI開発の方向性で各国が合意できなくとも、禁止事項では一致すべきだという考えです。 署名者には、AI研究の権威ジェフリー・ヒントン氏、OpenAI共同創業者ヴォイチェフ・ザレンバ氏、AnthropicのCISOなど業界を牽引する人物が名を連ねています。AIの能力を最もよく知る専門家たちが、そのリスクに警鐘を鳴らしている形と言えるでしょう。 企業の自主的な取り組みだけでは不十分だという危機感も示されました。専門家は、AI企業が定める責任あるスケーリング方針は「真の強制力に欠ける」と指摘します。将来的には、レッドラインを定義・監視し、強制力を持つ独立した国際機関が必要になるとの見解が示されています。 現在、EUのAI法など地域的な規制は存在しますが、世界共通の合意はありません。米中間では核兵器の制御をAIに委ねないという限定的な合意があるのみです。今回の呼びかけは、こうした断片的なルールではなく、より広範で普遍的なグローバル基準の必要性を浮き彫りにしています。 AI規制が経済発展やイノベーションを阻害するとの批判もあります。しかし、専門家はこれを否定します。「安全性を確保する方法がわかるまでAGI(汎用人工知能)を開発しないことで両立できる」と主張。安全性を組み込んだ技術開発こそが、持続的な発展につながるのではないでしょうか。

AGIの知能は測れるか?新指標「ARC」がAIの課題を映し出す

OpenAIDeepMindなどの主要AIラボは、数年内にAGIが実現するとの見方を示しています。AGIの登場は経済や科学に計り知れない影響を及ぼす可能性があります。そのため、技術の進捗を客観的に追跡し、法規制やビジネスモデルを準備することが不可欠です。AGIの能力を測るベンチマークは、そのための羅針盤となります。 AIの知能測定はなぜ難しいのでしょうか。それは、AIの強みや弱みが人間とは根本的に異なるためです。人間のIQテストは、記憶力や論理的思考など複数の能力を総合的に測りますが、AIにはそのまま適用できません。学習データにない未知の状況に対応する「流動性知能」の評価が、特に大きな課題となっています。 かつてAIの知能を測るとされたチェスやチューリングテストは、もはや有効ではありません。1997年にチェス王者を破ったIBMのDeep Blueは、汎用的な知能を持ちませんでした。近年の大規模言語モデル(LLM)は人間のように対話できますが、簡単な論理問題で誤りを犯すこともあり、その能力は限定的です。 こうした中、Googleのフランソワ・ショレ氏が2019年に開発した「ARCベンチマーク」が注目されています。これは、いくつかの図形パズルの例題からルールを抽出し、新しい問題に応用する能力を測るテストです。大量の知識ではなく、未知の課題を解決する思考力(流動性知能)に焦点を当てている点が特徴です。 ARCベンチマークでは、人間が容易に解ける問題にAIは今なお苦戦しています。2025年には、より複雑な新バージョン「ARC-AGI-2」が導入されました。人間の平均正答率が60%であるのに対し、最高のAIモデルでも約16%にとどまっています。AIが人間レベルの思考力を獲得するには、まだ大きな隔たりがあるようです。 専門家はARCを、AIのアルゴリズム機能を解明する優れた理論的ベンチマークだと評価しています。しかし、その形式は限定的であり、社会的推論など現実世界の複雑なタスクを評価できないという限界も指摘されています。AGIの進捗を知る有力な指標の一つですが、それだけでAGIの全てを測れるわけではありません。 ARC以外にも、多様なAGIベンチマークの開発が進んでいます。仮想世界でのタスク実行能力を測るGoogle DeepMindの「Dreamer」や、テキスト、画像音声など5種類の情報を扱う「General-Bench」などがその例です。究極的には、現実世界で物理的なタスクをこなす能力が試金石になるとの見方もあります。 結局のところ、「AGIとは何か」という定義自体が専門家の間でも定まっていません。「既に実現した」という意見から「決して実現しない」という意見まで様々です。そのため、「AGI」という言葉は、それが何を指し、どのベンチマークで評価されているのかを明確にしない限り、実用的な意味を持ちにくいのが現状と言えるでしょう。

OpenAI、人型ロボット開発を強化 AGI競争の新局面へ

AI開発をリードするOpenAIが、AGI(汎用人工知能)実現に向けた次の一手として人型ロボット開発を本格化させています。同社は最近、人型ロボット向けAIシステムの専門研究者の採用を開始しました。これは、物理世界でタスクを実行する能力がAGI開発の鍵になるとの認識が業界で高まっていることを示唆します。TeslaやFigure AIなど先行企業との競争が激化しそうです。 なぜ今、人型ロボットなのでしょうか。その理由は、ロボットが人間用に設計された環境で活動できる点にあります。階段を上るなど物理的なタスクを通じた学習が、より高度な知能の獲得につながると考えられています。文章生成は得意でも「コーヒーを淹れる」ことができない現在のAIの限界を超える狙いです。 OpenAIは2021年にロボティクス部門を一度閉鎖しましたが、再びこの分野に注力し始めました。AIの次なるブレークスルーとして、物理世界を理解する「ワールドモデル」の構築が重要視されています。ロボット開発はその鍵を握るプロジェクトと位置づけられているのです。 人型ロボット市場では、すでに多くの企業が開発競争を繰り広げています。TeslaやFigure AI、Boston Dynamicsなどが有力なプレイヤーです。中国のUnitreeは低コストなロボットで市場に参入。OpenAIは先行するハードウェア企業に対し、得意のAIアルゴリズムで優位性を築く戦略です。 人型ロボット市場は2050年までに5兆ドル規模に達するとの予測もあり、期待が高まっています。しかし、SNSで目にする見事なデモ動画は、特定の条件下でしか成功しない場合も少なくありません。未知の環境で安定して動作する信頼性の確保が、実用化に向けた最大の課題と言えるでしょう。 実用化はまず、工場や倉庫といった産業現場から進む見通しです。Amazonは倉庫内で、現代自動車は工場で人型ロボットの試験導入を開始しています。危険で単調な作業の代替が主な目的です。各家庭で活躍する「ロボット執事」の実現はまだ先になりそうです。 今後の技術的な焦点は、ハードとソフトの両面にあります。人間の手のように繊細な作業をこなすハードウェアは依然として難題です。また、未知の状況にも対応できる汎用的なAIモデルも欠かせません。AIの「幻覚」が物理世界で起きないよう、安全性と信頼性の確保が最優先されます。

AGI開発競争に警鐘、Anthropicなどに開発中止要求

米英AI大手前でハンスト

AGI(汎用人工知能)開発の中止要求
サンフランシスコとロンドンで展開
複数の市民が平和的に断食を継続
開発競争を「災害への競争」と表現
CEO宛てに開発中止の書簡提出

背景にある危機意識

超知能がもたらす破滅的リスクを懸念
Anthropic CEOの「10〜25%の確率で大惨事」発言を問題視

サンフランシスコとロンドンで、AI開発大手AnthropicおよびGoogle DeepMindのオフィス前で、AGI(汎用人工知能)開発の中止を求めるハンガーストライキが開始されました。市民らは、制御不能な超知能開発が人類の存亡に関わる「破滅的リスク」をもたらすと訴え、開発競争の即時停止を経営層に要求しています。

抗議行動の中心人物であるグイド・ライヒシュタッター氏は、サンフランシスコのAnthropic本社前で長期間にわたり断食を敢行。ロンドンでは、マイケル・トラッジ氏らがGoogle DeepMindのオフィス前で同様の行動を取りました。彼らは単なる抗議ではなく、経営者やAI開発者が個人的にこの問題に真剣に向き合うよう対面での説明を求めています。

抗議者が危機感を持つ背景には、AGI開発が人間レベル、あるいはそれを超える知性を持つシステムを生み出すという目標があります。ライヒシュタッター氏は、AnthropicのCEOが以前、「人類文明の規模で破局的に悪いことが起こる確率は10〜25パーセント」と発言した事実を挙げ、その高いリスクを認識しながら開発を続ける姿勢を「狂気」だと厳しく批判しています。

抗議者らは、開発競争は「災害に向かう無制御な世界競争」だと警鐘を鳴らし、政府による国際的な規制の必要性も訴えています。対して、Google DeepMind側は「安全性、セキュリティ、責任あるガバナンス」が最優先事項だとコメントしましたが、開発停止の要求に対しては具体的に応じていません。

このハンガーストライキは、AI開発に携わる内部関係者にも議論を呼んでいます。一部のAI企業社員は、AIによる人類滅亡の可能性を信じつつも、より安全意識の高い企業で働いていると告白しています。抗議行動は、AI産業全体に対し、倫理的責任と技術開発の暴走に対する根本的な問いかけとなっています。

Gemini 2.5がICPCで金獲得。人間不能の難問を30分で解決しAGIへ前進

プログラミング能力の証明

ICPC世界大会で金メダルレベルの成績
全12問中10問を正解し総合2位相当
人間チームが解けなかった難問Cを突破
国際数学オリンピック(IMO)に続く快挙

技術的ブレイクスルー

マルチステップ推論並列思考能力を活用
動的計画法と革新的な探索手法を適用
創薬半導体設計など科学工学分野への応用期待
プログラマーの真の協働パートナーとなる可能性

Google DeepMindのAIモデル「Gemini 2.5 Deep Think」が、2025年国際大学対抗プログラミングコンテスト(ICPC)世界大会で金メダルレベルの成果を達成しました。人間チームが誰も解けなかった複雑な最適化問題を見事に解決し、抽象的な問題解決能力におけるAIの劇的な進化を証明しました。

Geminiは競技ルールに従い、5時間の制限時間で12問中10問を正解しました。これは出場した大学139チームのうち、トップ4にのみ与えられる金メダルレベルに相当し、大学チームと比較すれば総合2位の成績となります。

特に注目すべきは、全ての人間チームが解決できなかった「問題C」を、Geminiが開始からわずか30分以内に効率的に解いた点です。これは、無限に存在する構成の中から、最適な液体分配ネットワークを見つけ出すという、極めて困難な課題でした。

Geminiは、各リザーバーに「プライオリティ値」を設定し、動的計画法を適用するという革新的なアプローチを採用しました。さらにミニマックス定理を利用し、最適解を効率的に導出するためにネストされた三進探索を駆使しました。

この快挙は、プレトレーニング強化学習、そして複数のGeminiエージェントが並列で思考し、コードを実行・検証するマルチステップ推論技術の統合によって実現しました。これにより、Geminiは最も困難なコーディング課題からも学習し進化しています。

ICPCの成果は、AIがプログラマーにとって真の問題解決パートナーになり得ることを示しています。AIと人間の知見を組み合わせることで、ロジスティクスやデバッグ創薬、マイクロチップ設計といった科学・工学分野の複雑な課題解決を加速させることが期待されます。

この先進技術の一部は、すでにGoogle AI Ultraのサブスクリプションを通じて、軽量版のGemini 2.5 Deep Thinkとして提供されています。AIコーディングアシスタントの知能が飛躍的に向上し、開発現場の生産性向上に直結するでしょう。

OpenAI、AGIへ「人型ロボットAI」開発を急加速

AGI実現への新経路

AGI実現へ物理世界での行動を重視
LLMの限界を認め新たな研究領域へ移行
人型ロボットAIの汎用化を目標に設定

開発体制と技術基盤

人型ロボット研究の専門家を積極採用
遠隔操作とシミュレーションで訓練
Nvidia Isaacなど開発環境を導入

ハード開発の可能性

試作・構築経験を持つ機械エンジニアを募集
量産化を視野に入れたハードウェア設計を示唆

OpenAIAGI(汎用人工知能)達成に向け、ロボティクス研究を本格的に再加速させています。特に、物理世界との相互作用を可能にする人型ロボットAIの開発に注力するため、スタンフォード大学などから専門家を積極的に採用していることが明らかになりました。これは、既存のLLMモデルの限界を超え、AIを次の段階へ進めるための戦略的な転換です。

同社は、AGIを実現するには、単なる対話や推論能力だけでなく、現実世界でタスクを実行できるアルゴリズムが必要だと判断しました。このため、大規模言語モデル(LLM)の発展がピークに達しつつあると見て、物理的な感覚や運動制御を伴う新たな研究分野に焦点を移しています。

採用された研究者たちは、人型や部分的に人型をしたロボットを制御するAIアルゴリズム開発の専門家です。求人情報からは、ロボットを人間が操作し、その動きをAIが学習するテレイグジスタンス(遠隔操作)シミュレーションを用いた訓練システムの構築を進めていることが分かります。

具体的には、ロボット訓練に広く使われるNvidia Isaacなどの仮想物理環境シミュレーション技術の専門知識が求められています。これにより、現実世界での試行錯誤コストを削減しつつ、AIが複雑な環境に適応する能力を効率的に獲得することが期待されます。

OpenAIが自社でロボットを製造するか、既存のハードウェアを活用するかは不明確です。しかし、求人には、センサー付きロボットシステムの試作・構築経験を持つ機械エンジニアの募集があり、量産(100万台以上)を前提とした設計経験も要求されており、ハードウェアへの深い関与を示唆しています。

このロボティクスへの再参入は、競争が激化する市場への挑戦です。すでにFigureやAgilityなどのスタートアップに加え、テスラやGoogleといった巨大AI企業も人型ロボット開発に大規模な投資を行っています。現時点では、OpenAI「魔法のような優位性はない」との指摘もあり、今後の技術開発競争に注目が集まっています。

AI帝国の危険性と信じるコスト

AI帝国の実態

OpenAIが築くAI帝国
AGI達成への熱狂的な信仰
スピードを最優先する開発方針

拡大がもたらす代償

天文学的な投資の継続
雇用・環境・人権への被害
「人類への利益」という不確かな約束

求められる別の道

AlphaFoldのような目的別AI
信念による現実からの乖離

ジャーナリストのカレン・ハオ氏は、著書「AI帝国」で現代のAI産業、特にOpenAIを「帝国」と表現しました。その背景には、「人類への利益」というAGIへの熱狂的な信仰があると指摘。この信念が、速度や規模の拡大を優先させ、多大なコストを生んでいると分析しています。

ハオ氏は、OpenAIが「勝者がすべてを得る」という競争を定義した結果、速度第一主義が生まれたと分析。効率性や安全性よりもスピードが優先され、既存技術に計算資源を投入するという安易な道が選ばれたと指摘しています。この手法が業界全体の基準となってしまったのです。

この開発競争には天文学的なコストが伴います。OpenAIは2029年までに1150億ドルの資金を使う見通しですが、それ以上に問題なのは社会的な被害です。雇用喪失や環境負荷の増大、発展途上国のデータ作業者への搾取など、その拡大は多大な代償を支払っています。

しかし、ハオ氏はスケーリング以外の道もあったと指摘します。アルゴリズムの改善も進化の方法です。その好例がGoogle DeepMindAlphaFoldです。特定目的に特化し、科学的なブレークスルーをもたらした一方で、LLMのような有害な副作用を最小限に抑えています。

最大の危険は、その「使命」に酔いしれて現実感覚を喪失することです。製品の人気を「人類への利益」と混同し、被害を過小評価している。ハオ氏は、自らの信念に囚われ、現実から目を背けることの危うさを強く警告しているのです。