データセンター(インフラ)に関するニュース一覧

MIT、AI電力需要増に対応する新組織設立

AIが招く電力危機

2030年に世界需要が倍増
米国では電力の9%を消費予測
主因はAI利用の爆発的拡大

MITの産学連携フォーラム

研究者と産業界の専門家を結集
持続可能なAI成長の解決策を模索
エネルギー業界全体が参加

多角的な研究アプローチ

低/ゼロカーボン電力の供給
送電網の拡張と運用管理
AI活用による配電・立地の最適化

マサチューセッツ工科大学(MIT)のエネルギーイニシアティブ(MITEI)が9月、AIの急拡大で急増するデータセンター電力需要に対応するため、産学連携の「データセンター・パワー・フォーラム」を設立しました。このフォーラムは、研究者と産業界の専門家を集め、持続可能なデータ駆動型の未来に向けた革新的な電力ソリューションを探求することを目的としています。

AIの利用拡大は、電力インフラに前例のない負荷をかけています。調査機関によれば、世界のデータセンター電力需要は2030年までに倍以上に増加する見通しです。米国だけでも、全電力消費に占めるデータセンターの割合は2023年の4%から、2030年には9%に達すると予測されており、エネルギー業界にとって喫緊の課題となっています。

この課題に対し、MITEIが設立したフォーラムは、AIの持続可能な成長電力インフラの強化という二つの目標を追求します。MITEIのディレクターは「AIと送電網のバリューチェーン全体から利害関係者を集め、非商業的かつ協力的な環境で解決策を議論する場を提供する」と述べ、産学連携の重要性を強調しています。

フォーラムの研究対象は多岐にわたります。具体的には、低炭素・ゼロカーボンのエネルギー供給、送電網の負荷運用と管理、電力市場の設計や規制政策などが含まれます。さらに、省電力プロセッサや効率的なアルゴリズム、データセンターの冷却技術といった、エネルギー効率を高めるための技術開発も重要なテーマです。

MITEIはこれまでも、AIを活用した配電の最適化やデータセンターの立地に関する経済性分析など、関連プロジェクトを多数支援してきました。新設されたフォーラムは、これらの既存研究の知見を統合し、より包括的で実用的な解決策を生み出すためのハブとしての役割を担うことが期待されています。

AI技術の発展は、ビジネスの生産性や競争力を飛躍的に高める可能性を秘めています。しかし、その裏側にあるエネルギー問題から目を背けることはできません。今回のMITの取り組みは、技術革新と持続可能性の両立を目指す上で、重要な一歩となるでしょう。

オープンソースAI、性能でGPT-5を凌駕

Kimi K2、性能で市場席巻

主要ベンチマークGPT-5を凌駕
推論コーディング能力で業界トップ
自律的なツール使用能力で他を圧倒

オープンソース新時代の幕開け

モデルの重みとコードを完全公開
寛容なライセンスで商用利用も促進
GPT-510分の1以下の低コスト
クローズドモデルとの性能差の消滅

中国のAIスタートアップMoonshot AIが2025年11月6日、オープンソースの大規模言語モデル「Kimi K2 Thinking」を公開しました。このモデルは、推論コーディング能力を測る複数の主要ベンチマークで、OpenAIの「GPT-5」など最先端のプロプライエタリ(非公開)モデルを上回る性能を記録。オープンソースAIが市場の勢力図を塗り替える可能性を示し、業界に衝撃が走っています。

Kimi K2 Thinkingの性能は、特にエージェント(自律AI)としての能力で際立っています。ウェブ検索推論能力を評価する「BrowseComp」ベンチマークでは、GPT-5の54.9%を大幅に上回る60.2%を達成。これは、オープンソースモデルが特定のタスクにおいて、業界トップのクローズドモデルを明確に凌駕したことを示す歴史的な転換点と言えるでしょう。

このモデルの最大の魅力は、完全なオープンソースである点です。モデルの「重み」やコードは誰でもアクセス可能で、寛容なライセンスの下で商用利用も認められています。これにより、企業はこれまで高価なAPIに依存していた高性能AIを、自社データで安全に、かつ低コストで活用する道が開かれます。

高性能と低コストを両立させる秘密は、効率的なモデル設計にあります。「専門家混合(MoE)」アーキテクチャと、精度を維持しつつ計算量を削減する「量子化」技術を採用。これにより、GPT-5と比較して10分の1以下の圧倒的な低価格でのサービス提供を可能にしています。

Kimi K2 Thinkingの登場は、巨額の資金を投じてデータセンターを建設するOpenAIなどの戦略に大きな疑問を投げかけます。高性能AIの開発が、必ずしも莫大な資本を必要としないことを証明したからです。AI業界の競争は、資本力だけでなく、技術的な工夫や効率性へとシフトしていく可能性があります。

経営者開発者にとって、これは何を意味するのでしょうか。もはや特定のベンダーに縛られることなく、自社のニーズに最適なAIを自由に選択・改変できる時代が到来したのです。コストを抑えながらデータ主権を確保し、独自のAIエージェントを構築する。Kimi K2 Thinkingは、そのための強力な選択肢となるでしょう。

Google、豪州離島に軍事AI拠点を極秘計画

AIと地政学の融合

豪州軍とのクラウド契約が背景
インド洋の戦略的要衝クリスマス島
中国海軍の活動監視が主目的
AIによる最先端の軍事指揮統制を実現

計画の概要と影響

施設の規模や費用は非公開
ダーウィンへの海底ケーブル敷設を申請
日米豪の防衛協力の拠点に
島の経済活性化への期待と懸念

Googleが、オーストラリア軍とのクラウド契約の一環として、インド洋に浮かぶ豪州領クリスマス島に大規模なAIデータセンターを建設する秘密計画を進めていることが明らかになりました。2025年11月6日に報じられたこの計画は、中国の海洋活動を監視する上で極めて重要な戦略的拠点となる可能性を秘めています。

クリスマス島は、インドネシアから南へわずか約350キロに位置し、軍事戦略家が「極めて重要」とみなす場所です。この立地は、世界の海運と潜水艦の主要航路であるスンダ、ロンボク、マラッカ海峡の監視を可能にします。元米海軍戦略家は、この施設がAIを活用した最先端の軍事指揮統制を実現すると指摘しています。

このプロジェクトは、Googleが2025年7月にオーストラリア国防省と締結した3年間のクラウド契約に続くものです。しかし、計画の詳細は厚いベールに包まれており、施設の規模、費用、具体的な能力の多くは非公開とされています。Googleと豪国防省はいずれもコメントを控えています。

計画には、米海兵隊が半年ごとに駐留する北部準州のダーウィンと島を結ぶ海底ケーブルの敷設も含まれています。最近の日米豪合同軍事演習では、クリスマス島が無人兵器システムの発射拠点としての価値を証明しており、三国間の防衛協力におけるハブとなる可能性があります。

これまで通信インフラが脆弱で、経済的機会に乏しかったクリスマス島。約1600人の住民の一部は、この巨大プロジェクトがもたらす経済効果に期待を寄せる一方、アカガニの大移動で知られる島の貴重な自然環境への影響を懸念する声も上がっており、慎重な見方が広がっています。

大手テック企業が国家安全保障に深く関与する事例は増えています。Googleのこの動きは、AI技術が地政学的なパワーバランスを左右する新たな時代の到来を象徴していると言えるでしょう。この秘密のAI拠点がインド太平洋地域の安全保障にどのような影響を与えるか、今後の動向が注目されます。

グーグル、AIの電力危機を宇宙で解決へ

宇宙データセンター構想

AIの電力需要急増への対応
太陽光発電を利用する衛星群
Google製AIチップTPUを搭載
衛星間は光通信で高速接続

残された技術的課題

宇宙空間での熱管理
システムの長期信頼性の確保
過酷な放射線環境への対策

Googleは11月5日、AIの爆発的な電力需要に対応するため、宇宙空間にデータセンターを設置する壮大な構想「Project Suncatcher」を発表しました。これは太陽光で稼働する衛星群にAIチップを搭載し、地球の資源制約から脱却する試みです。実現には多くの技術的課題が残りますが、AIの持続可能な未来を拓く一手となるでしょうか。

なぜ宇宙なのでしょうか。背景には、AIの凄まじい電力消費があります。一説では2028年までにAIだけで米国全家庭の電力消費の22%に相当する量に達すると予測されています。また、データセンターの冷却には大量の水が必要となり、地球環境への負荷が大きな懸念となっています。

「Project Suncatcher」は、低軌道に多数の小型衛星を打ち上げ、それぞれにGoogle独自のAIアクセラレータ「TPU(Tensor Processing Unit)」を搭載します。動力は太陽光発電で全て賄い、衛星間の通信には高速な自由空間光通信を利用。これにより、宇宙に一つの巨大な計算基盤を構築する計画です。

もっとも、これは「ムーンショット(壮大な挑戦)」であり、課題も山積しています。スンダー・ピチャイCEOも認めるように、宇宙空間の過酷な放射線、真空での熱管理、そして軌道上でのシステムの長期的な信頼性確保が大きなハードルです。初期テストではTPUの放射線耐性が確認されたとしています。

Googleはこのプロジェクトを通じて、AIの計算能力を地球の制約から解放し、需要の伸びに際限なく応えられるソリューションを模索しています。この野心的な試みがAIインフラの新たなフロンティアを切り拓くか、その動向が注目されます。

銅積層プレートでAIの熱問題を解決

深刻化するAIの発熱問題

次世代GPUの消費電力最大600kW
データセンターの冷却能力が限界に
メモリ等周辺チップの冷却が課題

新技術スタックフォージング

銅シートを熱と圧力で一体化
継ぎ目なし漏洩リスクを低減
3Dプリンタより安価で高強度

競合を上回る冷却性能

熱性能は競合比35%向上
髪の毛半分の微細な流路を実現

米国スタートアップ、Alloy Enterprises社が、AIデータセンターの深刻な発熱問題に対応する画期的な冷却技術を開発しました。次世代GPUの消費電力は最大600キロワットにも達し、既存の冷却方式では限界が見えています。同社は銅の薄いシートを熱と圧力で一体化させる「スタックフォージング」技術を用い、高性能な冷却プレートを製造。AIの進化を支えるインフラの課題解決に乗り出します。

AIの性能向上に伴い、GPUの発熱量は爆発的に増加しています。Nvidia社が2027年にリリース予定の次世代GPU「Rubin」シリーズでは、サーバーラックあたりの消費電力が最大600キロワットに達する見込みです。この膨大な電力を処理するためには、空冷から液冷への移行が不可欠ですが、特に周辺チップの冷却ソリューションが追いついていないのが現状です。

Alloy Enterprises社が開発した「スタックフォージング」は、この課題を解決する独自技術です。レーザーで精密に加工した銅のシートを何層にも重ね、特殊な装置で熱と圧力をかけて接合します。これにより、まるで一つの金属塊から削り出したかのような、継ぎ目のない冷却プレートが完成します。複雑な内部構造を自在に設計できるのが大きな特徴です。

従来の冷却プレートは、機械で削り出した2つの部品を接合して作られるため、高圧下での液漏れリスクが常にありました。一方、3Dプリンティングは高コストで、金属内部に微小な空洞が残り強度が低下する課題があります。スタックフォージングはこれらの欠点を克服し、素材本来の強度を保ちつつ、低コストで信頼性の高い製品を実現します。

この新技術により、冷却プレートの性能は飛躍的に向上しました。同社によれば、熱性能は競合製品に比べて35%も高いとのことです。また、人間の髪の毛の半分ほどである50ミクロンという微細な流路を内部に形成できるため、より多くの冷却液を循環させ、効率的に熱を除去することが可能になります。

Alloy Enterprises社は既にデータセンター業界の「すべての大手企業」と協業していると述べており、その技術への期待の高さがうかがえます。当初はアルミニウム合金で技術を開発していましたが、データセンターからの強い要望を受け、熱伝導性と耐食性に優れた銅へと応用しました。AIの進化を止めないため、冷却技術の革新が今まさに求められています。

AIデータセンターブーム、米国経済に歪みと電力危機

巨額投資がもたらす歪み

GDP成長のほぼ全てを占める投資
他セクターへの資本流入が減少
AI利用料は補助金漬けの現状

エネルギー危機とコスト増

電力網を圧迫する膨大な電力消費
供給不足による電気料金の高騰
将来のサージプライシング導入リスク

市場と雇用の変調

AI関連株が牽引する株式市場
ハイテク大手の人員削減と雇用の停滞

MicrosoftAmazonなど巨大テック企業が2025年、米国でAIデータセンターに記録的な投資を行っています。この投資米国経済の成長を牽引する一方で、電力インフラの逼迫、将来的なコスト急騰、他産業での雇用停滞といった深刻な経済の歪みを生み出しています。AIによる生産性向上という明るい面の裏で、その持続可能性が問われる事態となっています。

ハーバード大学の経済学者ジェイソン・ファーマン氏の試算によると、2025年上半期の米国GDP成長のほぼ全てが、データセンター関連投資によるものでした。これは、AIという単一技術に資本が異常に集中していることを示唆します。その結果、製造業など他の重要セクターへの投資が滞り、経済全体の健全な成長を阻害する懸念が高まっています。

AIの膨大な計算処理を支えるデータセンターは、凄まじい量の電力を消費します。しかし、米国電力網の増強が全く追いついていないのが現状です。電力需給の逼迫はすでに各地で電気料金の高騰を招いており、OpenAIは「電力不足が米国のAIにおける優位性を脅かす」と政府に警告する書簡を送りました。

現在のAIサービス利用料は、テック企業の補助金によって安価に抑えられています。しかし専門家は、いずれ需要に応じて価格が変動する「サージプライシング」が導入されると予測します。そうなれば、AIの推論コストは急騰し、多くの企業のAI活用戦略の前提が覆される可能性があります。収益化への道はまだ見えていません。

米国の株式市場はAI関連銘柄が牽引し、活況を呈しています。しかしその裏では、GPUなどの資産の耐用年数を長く見積もる会計処理によって、利益が実態より大きく見えている可能性が指摘されています。一部の企業は巨額の債務を抱え始めており、AIバブル崩壊のリスクも囁かれています。

巨額の投資が行われる一方で、ハイテク大手は人員削減を進めています。データセンターへの資本集中は、本来であれば雇用を生み出すはずの他分野への投資機会を奪っています。AIが一部の職を代替し始めている兆候もあり、AIブームが必ずしも雇用市場全体にプラスに作用していない現実が浮き彫りになっています。

AIの導入を急ぐ企業にとって、このブームの裏にあるリスクを直視することが不可欠です。リーダーは、目先の性能だけでなく、エネルギー効率や単位あたりの経済性(ユニットエコノミクス)を重視し、持続可能なAI戦略を構築する必要があるでしょう。コスト構造の変動に備え、より賢く、より効率的なAI活用が求められています。

独の産業革新へ、NVIDIAとテレコムがAIクラウド創設

データ主権守る巨大AI基盤

10億ユーロ規模の共同事業
ドイツ国内でデータを管理
欧州の産業競争力を強化
2026年初頭に稼働開始

最高峰技術とエコシステム

NVIDIA最新GPUを最大1万基
独テレコムがインフラ提供
SAP、シーメンス等が参画

半導体大手NVIDIAドイツテレコムは11月4日、ドイツ国内に世界初となる産業特化のAIクラウド「Industrial AI Cloud」を共同で設立すると発表しました。総額10億ユーロを投じ、2026年初頭の稼働を目指します。この提携は、ドイツのデータ主権を守りながら産業のデジタルトランスフォーメーションを加速させ、欧州の国際競争力を高めることを目的としています。

NVIDIAのジェンスン・フアンCEOは、AIを稼働させるデータセンターを「現代版の工場」と表現し、知能を生み出す重要性を強調しました。このプロジェクトは、欧州企業が自国のデータ管理下で安全にAI開発を進める「ソブリンAI(データ主権AI)」の実現に向けた大きな一歩となります。

ミュンヘン近郊に新設される「AIファクトリー」には、NVIDIAの最新GPU「Blackwell」アーキテクチャを採用したシステムなどが最大10,000基搭載される計画です。ドイツテレコムは信頼性の高いインフラと運用を提供し、企業が大規模なAIモデルのトレーニングや推論を高速かつ柔軟に行える環境を整えます。

この構想には、ソフトウェア大手SAPや製造業大手シーメンスなど、ドイツを代表する企業がエコシステムパートナーとして参画します。メルセデス・ベンツやBMWといった自動車メーカーも、AI駆動のデジタルツインを用いた複雑なシミュレーションでの活用を見込んでおり、幅広い産業での応用が期待されます。

具体的な活用例としては、製品開発を高速化するデジタルツイン、工場の自動化を進めるロボティクス、設備の故障を事前に予測する予知保全などが挙げられます。製造業の変革を促す「インダストリー4.0」をさらに加速させる起爆剤となるでしょうか。

今回の提携は、ドイツの国際競争力強化を目指す官民イニシアチブ「Made for Germany」から生まれた最初の具体的な成果の一つです。欧州では、外国の巨大テック企業への技術依存を減らしデジタル主権を確立する動きが強まっており、このAIクラウド欧州独自の技術革新の新たな核となる可能性を秘めています。

Google、宇宙AIデータセンターで計算能力を拡張

壮大な宇宙構想

Google新研究計画サンキャッチャー
宇宙空間でのAI計算能力を拡張
TPU搭載衛星をネットワーク

宇宙ならではの利点

常時太陽光で安定した電力供給
地上の最大8倍太陽光発電効率
地上の電力・土地問題を回避

実現への道のり

衛星間の超高速通信が最大の課題
2027年に試作機打ち上げ予定

Googleは2025年11月4日、宇宙空間で機械学習の計算能力を飛躍的に拡張する新研究計画「プロジェクト・サンキャッチャー」を発表しました。AIチップTPU」を搭載した多数の衛星を太陽光発電で稼働させ、ネットワーク化する壮大な構想です。地上のデータセンターが抱える電力消費や土地問題を解決し、AIの可能性を最大限に引き出すことを目指します。

この構想の背景には、AIの急速な発展に伴うデータセンターの爆発的な増加があります。その膨大な電力消費と設置場所の確保は、IT業界全体の大きな課題です。実際、イーロン・マスク氏なども宇宙空間でのデータセンター構想に言及しており、宇宙利用はAIインフラの新たなフロンティアとなりつつあります。

宇宙空間が持つ最大の利点は、ほぼ無限の太陽エネルギーを利用できる点です。「サンキャッチャー」計画では、衛星を常に太陽光が当たる軌道に投入します。宇宙のソーラーパネルは地上の最大8倍も発電効率が高く、安定的かつクリーンな電力でAIを稼働させることが可能になります。

実現には、多くの技術的課題を乗り越える必要があります。最大の難関は、高速で移動する衛星同士を超高速の光通信で接続する技術です。Googleはすでに地上での実験で毎秒1.6テラビットの双方向通信に成功しており、今後さらなるスケールアップを目指す方針です。

Googleはこの計画を、自動運転技術「Waymo」のような長期的な「ムーンショット(壮大な挑戦)」と位置付けています。第一歩として、パートナー企業と共に2027年初頭までに試作衛星2基を打ち上げ、軌道上でのハードウェア性能を検証する予定です。AIの未来を宇宙に託す挑戦が、今まさに始まりました。

マイクロソフトAI投資加速、電力不足が新たなボトルネックに

世界中でAIインフラ巨額契約

豪州企業と97億ドルの契約
クラウド企業Lambdaとも大型契約
UAEに152億ドル投資
最新NVIDIAGPUを大量確保

GPU余剰と電力不足の矛盾

チップ在庫はあっても電力が不足
データセンター建設が需要に追いつかない
CEO自らが課題を認める発言
エネルギー確保が最重要課題に浮上

マイクロソフトが、AIの計算能力を確保するため世界中で巨額のインフラ投資を加速させています。しかしその裏で、確保した大量のGPUを稼働させるための電力不足とデータセンター建設の遅れという深刻な問題に直面しています。同社のサティア・ナデラCEO自らがこの課題を認めており、AIのスケールアップにおける新たなボトルネックが浮き彫りになりました。

同社は、オーストラリアデータセンター企業IRENと97億ドル、AIクラウドを手がけるLambdaとは数十億ドル規模の契約を締結。さらにアラブ首長国連邦(UAE)には今後4年で152億ドルを投じるなど、最新のNVIDIAGPUを含む計算資源の確保をグローバルで推進しています。これは、急増するAIサービスの需要に対応するための動きです。

しかし、ナデラCEOは「現在の最大の問題は計算能力の供給過剰ではなく、電力データセンターの建設速度だ」と語ります。OpenAIサム・アルトマンCEOも同席した場で、ナデラ氏は「チップの在庫はあるが、接続できる場所がないのが実情だ」と述べ、チップ供給から物理インフラへと課題が移行したことを明確に示しました。

この問題の背景には、これまで横ばいだった電力需要データセンターの急増によって予測を上回るペースで伸びていることがあります。電力会社の供給計画が追いつかず、AI競争の足かせとなり始めています。AIの知能単価が劇的に下がるほど、その利用は爆発的に増え、さらなるインフラ需要を生む「ジェボンズのパラドックス」が現実味を帯びています。

アルトマン氏は核融合や太陽光発電といった次世代エネルギー投資していますが、これらの技術がすぐに大規模展開できるわけではありません。AIの進化を支えるためには、計算資源だけでなく、それを動かすための安定的かつ大規模な電力供給網の構築が、テクノロジー業界全体の喫緊の課題となっているのです。

LG創業者の孫、AI映画制作インフラで新会社設立

新会社設立の概要

LG創業者の孫の投資会社SFRが出資
AI映画制作会社Utopaiと合弁設立
映画・TV番組制作のAIインフラを開発
まず韓国のIPを世界へ展開

AI活用の狙いと展望

短期的にはコスト削減と効率化
長期的には新たな創造的可能性を追求
AIは人間の代替ではなく支援ツールと強調
韓国大規模データセンターが事業基盤

LG創業者の孫、ブライアン・クー氏が共同設立した投資会社Stock Farm Road (SFR)と、AI映画制作会社Utopai Studiosが、折半出資の合弁会社「Utopai East」を設立しました。この提携は、AIを活用した映画やテレビ番組制作に不可欠な大規模データセンターインフラを専門的に開発することを目的としています。SFRの資本力とUtopaiの技術力を融合させ、エンターテイメント業界のAI活用を根底から支える狙いです。

新会社では、SFRが資本、クリエイティブ分野の専門知識、業界内の人脈を提供し、Utopaiが技術、ワークフローインフラを担います。両社はインフラ開発に加え、映画やテレビプロジェクトの共同制作も手掛けます。最初の取り組みとして、韓国知的財産(IP)を世界市場向けに展開し、来年には初の共同制作コンテンツをリリースする計画です。

クー氏はAI活用の狙いを二段階で説明しています。短期的には制作プロセスのコスト削減と効率化が主目的です。しかし、長期的には「AIが切り拓く全く新しい可能性に興奮している」と語ります。従来の枠にとらわれない若手クリエイターとも連携し、AIならではの革新的な表現を追求していく方針です。

AIが人間の仕事を奪うのではないか、という業界の懸念に対し、両社は明確に否定的な立場を取ります。Utopaiのセシリア・シェンCEOは「我々のワークフローは、映画制作者に取って代わるのではなく、彼らと協働するために設計されている」と強調。AIはあくまで創造性を拡張するための支援ツールであると位置づけています。

この事業の根幹をなすのが、SFRが韓国・全羅南道で計画する3ギガワット規模のAIデータセンターです。このデータセンターは、Utopai Eastのエンタメコンテンツ制作に必要なデータ管理、制作、配信までの全AIインフラの基盤となります。クー氏はこの構想を「次世代の知能駆動型産業のバックボーン」と位置づけています。

Utopai Eastはまず韓国コンテンツ制作から事業を開始しますが、将来的にはアジア全域への展開を見据えています。シェンCEOは「日本は常に素晴らしい市場だ」と述べ、最初の拡大先として日本市場に強い関心を示しました。その後、中国やタイなどへの展開も視野に入れているということです。

AI巨額投資を煽るFOMO、バブル懸念強まる

急増する設備投資

ビッグテック4社、年間4000億ドル超へ
OpenAI1兆ドル規模IPO計画

リターンへの疑問と懸念

投資対効果は依然として不透明
OpenAIに横たわる巨額の資金ギャップ
投資家から高まるバブルへの警戒感

投資を駆り立てるFOMO

「取り残される恐怖」が投資を後押し
経営陣にのしかかるAI投資圧力

AmazonGoogleMicrosoftMetaのビッグテック4社が、AI分野での巨額の設備投資を加速させています。2025年の投資総額は4000億ドル(約60兆円)を超える見通しですが、明確な収益モデルは確立されていません。専門家は、この過熱する投資の背景には「FOMO(取り残されることへの恐怖)」があると指摘し、AI業界のバブル化への懸念を強めています。

4社の設備投資額は、2024年だけで3500億ドルを上回りました。各社の決算発表では、来年の投資額はさらに「増加する」「大幅に増加する」との見通しが示されています。これらの投資は主に、AIモデルの学習や運用に不可欠な半導体チップデータセンターの確保に充てられています。

一方で、巨額投資に見合うリターンは不透明なままです。例えばChatGPTを開発するOpenAIは、年間収益120億ドルを達成したと報じられる一方、2029年までに1150億ドルを消費するとの予測もあります。投資家からは「この支出に見合うリターンは得られるのか」という当然の疑問が投げかけられています。

業界内でもバブルを認める声は少なくありません。OpenAIのCEOサム・アルトマン氏でさえ「AIの一部はバブル的だ」と語ります。しかし、各社はAIエージェントなどの新サービスを次々と発表し、コストを削減してでもAIへの資源配分を優先する「使うために使う」戦略を続けているのが現状です。

この投資競争を煽っているのがFOMOに他なりません。VC専門家によれば、企業の取締役会ではCEOに対し「AIに何をしているのか」という問いが常に投げかけられるといいます。明確な収益予測がなくても、競合に遅れを取るリスクを避けるため、各社は投資を続けざるを得ない状況に追い込まれているのです。

もしこのバブルが弾けたとしても、業界が崩壊するわけではないとの見方が主流です。むしろ、資金力のある少数のプレイヤーへの集約・統合が進むと予測されます。成功するのは、必ずしも華やかな消費者向けサービスではなく、コーディング支援や顧客サービスなど、地道に収益を上げる分野かもしれません。

脱・投機実行、決定論的CPUがAI性能を予測可能に

投機的実行の限界

予測失敗によるエネルギー浪費
Spectre等の脆弱性リスク
AI処理での性能の不安定化

決定論的実行の革新

時間ベースでの正確な命令実行
パイプライン破棄なくし高効率化
ハードウェア簡素化と低消費電力

AI/MLへのインパクト

ベクトル演算での高スループット
TPUに匹敵する性能を低コストで実現

30年以上主流だったCPUの「投機的実行」に代わる新技術として、「決定論的実行」モデルが登場しました。これは命令を予測に頼らず時間ベースで正確に実行するもので、特にAIや機械学習(ML)の分野で課題だった性能の不安定さを解消します。エネルギー効率とセキュリティを大幅に向上させ、予測可能なパフォーマンスを実現する次世代アーキテクチャとして注目されています。

従来の投機的実行は、命令の実行順序を予測することで高速化を図ってきました。しかし、予測が外れるとパイプラインを破棄・再実行する必要があり、エネルギーの浪費と遅延が発生します。さらに、SpectreやMeltdownといった深刻なセキュリティ脆弱性の温床にもなりました。特にAIワークロードでは、この予測不可能性が性能の大きな足かせとなっていました。

新しい決定論的実行モデルは、予測という「当て推量」を排除します。代わりに「タイムカウンター」と「レジスタスコアボード」という仕組みを利用し、各命令に正確な実行タイミングを割り当てます。データやリソースが利用可能になる瞬間を事前に計算し、計画通りに命令を実行するため、無駄な処理が一切発生しないのです。

このアーキテクチャの最大の利点は、予測可能なパフォーマンスです。処理するデータによって性能が大きく変動する「パフォーマンスクリフ」がなくなり、安定したスループットを実現できます。また、パイプラインの破棄が不要になるため、エネルギー効率が劇的に向上し、ハードウェア設計も簡素化できるというメリットがあります。

決定論的実行は、ベクトル演算や行列演算が多用されるAI/MLワークロードに特に適しています。GoogleTPUのような専用ハードウェアに匹敵するスループットを、より低コストかつ低消費電力で実現する可能性を秘めています。これにより、データセンターからエッジデバイスまで、幅広いAIアプリケーションの性能向上に貢献するでしょう。

開発者にとって、この移行はスムーズです。アーキテクチャはRISC-V命令セットの拡張をベースにしており、GCCやLLVMといった既存のツールチェーンと互換性があります。プログラミングモデルを大きく変えることなく、ハードウェアの予測可能性と効率性の恩恵を受けられるため、よりシンプルに高性能なアプリケーションを開発できます。

かつて投機的実行がCPU設計に革命をもたらしたように、決定論的実行は次のパラダイムシフトとなるのでしょうか。AI時代の到来により、性能の予測可能性と電力効率への要求はかつてなく高まっています。この新しいアプローチは、次世代コンピューティングの鍵を握る重要な技術革新と言えるでしょう。

AIの電力消費急増、電気料金値上げの懸念現実に

高まる電気料金への懸念

米消費者の8割が料金を懸念
AI・データセンターが主因と認識

急増するデータセンター需要

米国電力需要は10年以上横ばい
直近5年で商業・産業用が急増
2028年に最大12%を消費と予測

追いつかない電力供給網

再エネ拡大も政策リスクが影
天然ガスは輸出優先で国内不足
発電所建設の長期化がボトルネック

米国でAIとデータセンター電力消費が急増し、消費者の間で電気料金の値上げに対する懸念が広がっています。太陽光発電事業者Sunrunが実施した最新の調査によると、消費者の80%データセンター電力消費が自身の光熱費に与える影響を心配していることが判明。近年の電力需要の急激な伸びが、この懸念を裏付けています。

消費者の懸念は杞憂ではありません。米国電力需要は10年以上安定していましたが、データセンターを含む商業利用の急増で状況は一変しました。データセンター電力消費は2018年から倍増し、現在では米国の総発電量の約4%を占めます。ローレンス・バークレー国立研究所は、2028年までにこの割合が最大12%に達すると予測しており、電力網への負荷は増す一方です。

これまで旺盛な電力需要は、太陽光など再生可能エネルギーの拡大で賄われてきました。しかし、再エネ導入を促す政策には先行き不透明感があります。一方、もう一つの主要電源である天然ガスも、増産分が輸出に優先され、発電所の新設も時間がかかるため、供給が需要に追いつかない懸念が高まっています。

AI技術は、一部で雇用削減の手段と見なされるなど、社会的な懸念も存在します。こうした状況で、生活に直結する電気料金の値上げという問題が加われば、AI開発やデータセンター建設に対する社会的な反発が一層強まる可能性も指摘されています。

CoreWeaveの大型買収破談、AI開発ツール企業買収へ転換

Core Scientific買収の破談

90億ドル規模の買収提案を株主が否決
AIインフラ市場の過熱が背景
筆頭株主が「安すぎる」と反対を推奨
否決の報道後、株価は逆に上昇

CoreWeaveの次なる一手

買収破談の直後に方針転換
Pythonノートブック「Marimo」を買収
AIアプリ開発への事業領域拡大が狙い
インフラから開発ツールへと事業を多角化

AIデータセンター大手のCoreWeaveは10月31日、同業のCore Scientificに対する90億ドル規模の買収提案が、Core Scientificの株主投票で否決されたと発表しました。背景にはAIインフラ市場の過熱があります。買収破談の直後、CoreWeaveは戦略を転換し、Python開発ツールを手がけるMarimoの買収を発表。AI市場での主導権争いが新たな局面を迎えています。

買収否決の決定打は、Core Scientificの筆頭株主であるTwo Seas Capitalの反対推奨でした。同社は「AIインフラへの投資は加速しており、提示された買収額は企業価値を過小評価している」と主張。Core Scientificが単独で成長し、より大きな価値を生み出せるとの強気な見方を示しました。この動きは、市場のAI関連企業への期待の高さを物語っています。

両社は共に暗号資産のマイニング事業から出発しましたが、その後の戦略で明暗が分かれました。CoreWeaveはNVIDIAとの提携をてこに、いち早くAIワークロード向けのデータセンター事業へ転換。企業価値はIPO時の約5倍である660億ドルにまで急騰しました。この成功が、今回の株主の判断に影響を与えたことは間違いありません。

Core Scientificの買収に失敗したCoreWeaveですが、その動きは迅速でした。同日、オープンソースのPythonノートブック「Marimo」を買収したと発表。買収額は非公開です。これは単なる代替投資ではなく、同社の事業戦略における重要な方針転換を示唆している可能性があります。

Marimoは、データ分析やAIアプリ開発で広く使われる開発ツールです。CoreWeaveがMarimoを手に入れることで、単なるインフラ提供者(ホスティング)から、開発者向けのツールも提供するプラットフォーマーへと、事業のスタックを上げることを狙っています。これにより、AIエコシステム内での影響力を一層高める戦略です。

今回の一連の出来事は、現在のAI市場の熱狂ぶりを象徴しています。株主は短期的な買収益よりも将来の大きな成長に賭け、企業はインフラからアプリケーションレイヤーへと覇権争いを拡大しています。AIをめぐる企業の合従連衡と競争は、今後さらに激化することが予想されます。

Apple CEO、AI分野のM&Aに意欲表明

AI強化へ3本柱の方針

AI分野でのM&A;や提携に前向き
自社開発・提携買収3本柱を継続
OpenAIに続く新たな提携も準備

次世代Siriと独自技術

AI搭載の次世代Siriは2026年公開予定
独自技術Private Cloud Compute活用
AI機能がスマホ選びの重要要素

Appleのティム・クックCEOは、2025年第4四半期の決算発表において、AI分野でのM&A;(合併・買収)や提携に前向きな姿勢を改めて示しました。同社はAI開発を加速させるため、戦略的な選択肢を常に検討していると強調。また、AIを搭載した次世代Siriが2026年にリリース予定であることも明言し、開発が順調に進んでいることを投資家にアピールしました。

クックCEOは、AppleのAI開発が「自社基盤モデル」「サードパーティとの提携」「企業買収」の3本柱で進められていることを再確認しました。「我々のロードマップを前進させるM&A;であれば、追求する用意がある」と述べ、市場を継続的に監視している姿勢を明らかにしました。これは、AI分野での競争力維持に向けた強い意志の表れと言えるでしょう。

パートナーシップの拡大にも意欲的です。AppleはすでにOpenAI提携し、ChatGPTSiriや「Apple Intelligence」に統合しています。クックCEOは決算発表前のインタビューで「将来的には、より多くの企業と統合していく」と語っており、特定の技術に固執せず、最適なパートナーと協力していく戦略を明確にしました。

自社技術の中核となるのが、プライバシー保護に特化したクラウドシステム「Private Cloud Compute」です。クックCEOは、この技術がすでに多くのSiriのクエリ処理に使われていると説明。このインフラを支えるサーバーの製造も数週間前にヒューストンで開始されており、データセンターでの活用に向けた増産体制が計画されています。

最後にクックCEOは、AI機能が消費者のスマートフォン選びに与える影響についても言及しました。「Apple Intelligenceは(購入の)一因であり、今後さらに大きな要因になると非常に強気に見ている」と述べ、AI機能が製品の競争力を左右する重要な要素になるとの認識を示しました。

AIはバブルか?巨額投資が招く熱狂と懸念

過熱するAI投資

数ヶ月で3倍に高騰する企業価値
3億ドル規模のシード資金調達
1000億ドル規模の巨額コミットメント

事業モデルの行方

インフラ分野への意外な参入者
スケール競争に逆らう創業者

持続可能性への問い

デモの成功が事業になる危うさ
実際のビジネスモデル構築の難しさ

米TechCrunchのイベントで、現在のAI市場がバブル状態にあるかどうかが議論されました。企業価値が数ヶ月で3倍になるなど、異例の規模の資金が急速に動いており、市場の過熱感を指摘する声が上がっています。多くの企業がAIデータセンターを中核的なビジネスモデルと見なしており、インフラ投資が活発化しています。

現在のAI市場には、バブルの兆候が明確に現れています。一部のスタートアップ数ヶ月で企業価値が3倍に跳ね上がり、シードラウンドで3億ドルもの資金を調達する事例も出てきました。1000億ドル規模の投資コミットメントも飛び交い、資金の動きは「速すぎる」との見方も出ています。

この熱狂の中で、多くの企業が事業モデルの核としてAIデータセンターに賭けています。AIの計算能力を支えるインフラへの投資が活発化しており、これまで予期されなかった業界からの新規参入も目立ちます。これは、AIの収益化が不透明な中で、確実な需要が見込める分野へ資金が集中していることを示しています。

一方で、こうしたスケールアップ競争に疑問を呈する動きもあります。例えば、AI研究の著名企業であるCohereの元研究リーダーは、大規模化だけを追求する流れに逆行するアプローチを提唱。また、バイラルに成功したデモがそのまま事業モデルとなってしまうことの持続可能性も問われています。

AI業界は巨額の資金流入によって急速な発展を遂げていますが、その一方で市場の過熱感や持続可能性への懸念も高まっています。経営者投資家は、この「バブル」とも言える状況を冷静に分析し、本質的な事業価値を見極めることが求められるでしょう。

Extropic、省エネAIチップでデータセンター覆す

新方式「熱力学チップ」

GPUとは根本的に異なる仕組み
熱のゆらぎを利用して計算
確率的ビット(p-bit)で動作
数千倍のエネルギー効率目標

初の試作機と将来性

初の実動ハードウェアを開発
AIラボや気象予測企業で試験
次世代機で拡散モデルを革新へ
データセンター電力問題に挑戦

スタートアップのExtropic社が、データセンターの常識を覆す可能性を秘めた新型コンピュータチップの最初の実動ハードウェアを開発しました。この「熱力学的サンプリングユニット(TSU)」は、従来のチップより数千倍のエネルギー効率を目指しており、AIの爆発的な普及に伴う莫大な電力消費問題への画期的な解決策として注目されています。

TSUは、GPUなどが用いる0か1のビットとは根本的に異なります。熱力学的な電子のゆらぎを利用して確率そのものを扱う「確率的ビット(p-bit)」で動作します。これにより、AIモデルや気象予測など、複雑なシステムの確率計算を極めて効率的に行えるようになります。この革新的なアプローチが、省エネ性能の鍵です。

同社は今回、初の試作機「XTR-0」を開発し、一部のパートナー企業への提供を開始しました。提供先には、最先端のAI研究を行うラボや気象モデリングを手がけるスタートアップ、さらには複数の政府関係者が含まれており、実環境での有用性の検証が始まっています。

パートナーの一社である気象予測AI企業Atmo社のCEOは、この新技術に大きな期待を寄せています。Extropicのチップを使えば、様々な気象条件が発生する確率を従来よりはるかに効率的に計算できる可能性があると述べており、より高解像度な予測モデルの実現につながるかもしれません。

Extropic社は、将来の展望も具体的に示しています。同社が発表した論文では、数千個のp-bitを搭載した次世代チップで、画像生成AIなどに用いられる「拡散モデル」を効率化できると説明。来年には25万p-bitを搭載したチップ「Z-1」の提供を目指しています。

この独自のアプローチは、業界専門家からも高く評価されています。ある専門家は「従来のトランジスタのスケーリングが物理的な限界に達する中、Extropic社の物理情報処理へのアプローチは、今後10年で変革をもたらす可能性がある」と指摘しています。

AIデータセンターへの巨額投資が続く一方で、そのエネルギー需要は深刻な課題です。Extropic社の挑戦は、ハードウェアの根本的な革新によってこの問題を解決しようとするものです。たとえ成功確率がわずかでも、試す価値のある重要な取り組みだと言えるでしょう。

NVIDIA、AI工場設計図と新半導体を一挙公開

AI工場構築の設計図

政府向けAI工場設計図を公開
ギガワット級施設のデジタルツイン設計
次世代DPU BlueField-4発表
産業用AIプロセッサ IGX Thor

オープンなAI開発

高効率な推論モデルNemotron公開
物理AI基盤モデルCosmosを提供
6G研究用ソフトをオープンソース化

NVIDIAは10月28日、ワシントンD.C.で開催の技術会議GTCで、政府・規制産業向けの「AIファクトリー」参照設計や次世代半導体、オープンソースのAIモデル群を一挙に発表しました。これは、セキュリティが重視される公共分野から創薬エネルギー、通信といった基幹産業まで、AIの社会実装をあらゆる領域で加速させるのが狙いです。ハード、ソフト、設計思想まで網羅した包括的な戦略は、企業のAI導入を新たな段階へと導く可能性があります。

発表の核となるのが、AI導入の設計図です。政府・規制産業向けに高いセキュリティ基準を満たす「AI Factory for Government」を発表。PalantirやLockheed Martinなどと連携します。また、Omniverse DSXブループリントは、ギガワット級データセンターデジタルツインで設計・運用する手法を提示。物理的な建設前に効率や熱問題を最適化し、迅速なAIインフラ構築を可能にします。

AIインフラの性能を根幹から支える新半導体も発表されました。次世代DPU「BlueField-4」は、AIデータ処理、ネットワーキング、セキュリティを加速し、大規模AI工場の中枢を担います。さらに、産業・医療のエッジ向けには、リアルタイム物理AIプロセッサ「IGX Thor」を投入。従来比最大8倍のAI性能で、工場の自動化や手術支援ロボットの進化を後押しします。

開発者エコシステムの拡大に向け、AIモデルのオープンソース化も加速します。高効率な推論でAIエージェント構築を容易にする「Nemotron」モデル群や、物理世界のシミュレーションを可能にする「Cosmos」基盤モデルを公開。さらに、次世代通信規格6Gの研究開発を促進するため、無線通信ソフトウェア「Aerial」もオープンソースとして提供します。

これらの技術は既に具体的な産業応用へと結実しています。製薬大手イーライリリーは、1000基以上のNVIDIA Blackwell GPUを搭載した世界最大級の創薬AIファクトリーを導入。General Atomicsは、核融合炉のデジタルツインを構築し、シミュレーション時間を数週間から数秒に短縮するなど、最先端科学の現場で成果を上げています。

今回の一連の発表は、AIが研究開発段階から、社会を動かす基幹インフラへと移行する転換点を示唆しています。NVIDIAが提示する「AIファクトリー」という概念は、あらゆる産業の生産性と競争力を再定義する可能性を秘めています。自社のビジネスにどう取り入れ、新たな価値を創造するのか。経営者やリーダーには、その構想力が問われています。

クアルコム、AIチップで王者NVIDIAに挑戦状

新チップでNVIDIAに対抗

AI200を2026年に投入
AI250を2027年に投入
AIモデルの推論処理に特化
サウジのAI企業が採用表明

モバイル技術をデータセンターへ

スマホ向けNPU技術が基盤
最大72チップでラック構成
AI250で大幅な低消費電力を実現
AI200は768GBのRAM搭載

携帯電話向け半導体大手のクアルコムは2025年10月27日、AI(人工知能)チップ市場への本格参入を発表しました。AIモデルの「推論」に特化した新製品「AI200」と「AI250」を投入し、同市場で圧倒的なシェアを誇るNVIDIAの牙城に挑みます。モバイル向けで培った技術をデータセンター向けに転用する戦略で、新たな成長を目指します。

2026年に投入予定の「AI200」は、AI推論に最適化され768GBのRAMを搭載します。2027年には、効率を飛躍的に高め、大幅な低消費電力を実現するという「AI250」をリリース予定。両製品ともAIモデルの学習ではなく、実行(推論)に特化している点が特徴です。

チップの核となるのは、スマートフォン向けで培ってきた「Hexagon NPU」技術です。この電力性能に優れたモバイル技術データセンターに応用することで、競合との差別化を図ります。同社の技術資産を最大限に活用した戦略と言えるでしょう。

クアルコムの参入は、これまで携帯電話や通信機器が主力だった同社にとって大きな戦略転換を意味します。最大72個のチップを単一コンピュータとして連携させる構成も可能で、NVIDIAやAMDのGPUが支配するデータセンター市場への明確な挑戦状と受け止められています。

すでにサウジアラビアの公共投資基金(PIF)傘下のAI企業「Humain」が新チップの採用を表明。同社はサウジアラビアでAIデータセンターを構築しており、クアルコムのチップがそのインフラの中核を担います。初の大口顧客を獲得し、幸先の良いスタートを切りました。

OpenAI、AI覇権の鍵は電力と米政府に提言

AI覇権を脅かす電力不足

米国のAIリーダーシップに黄信号
電力不足が最大のボトルネック
中国との深刻な「電子の格差
電子は新たな石油、戦略資産に

政府への4つの緊急提言

年間100GWの新規電力容量を構築
規制を近代化しエネルギー投資を促進
AI教育で次世代の労働者を育成
国家安全保障のためのAI活用拡大

OpenAIは2025年10月27日、米国のAI覇権確保に向け、年間100ギガワット(GW)の新規エネルギー容量構築を米政府に提言しました。急成長する中国との「電子の格差」に強い危機感を示し、電力を国家の戦略的資産と位置付けるよう訴えています。

なぜ今、電力なのでしょうか。AIは基盤技術ですが、その稼働には膨大な電力を消費します。OpenAIの分析では、AIインフラへの最初の1兆ドル投資が3年間でGDPを5%以上押し上げる一方、現在の電力供給ではこの成長を支えきれないと警告しています。

最大の脅威は中国の存在です。中国は2024年だけで429GWもの新規電力容量を追加しました。これは同年の米国の増加分(51GW)の8倍以上に相当します。OpenAIはこの状況を「電子の格差」と呼び、AI覇権競争における米国の弱点になりかねないと警鐘を鳴らしています。

OpenAIは提言だけでなく、自らも行動で示しています。同社はテキサス州やウィスコンシン州などで大規模データセンタースターゲイト」を建設中で、今後3年間で4000億ドル以上を投じ、約7GWの計算能力を追加する計画です。これは地域経済の活性化にも繋がります。

しかし、インフラ構築には大きな壁も存在します。それは熟練労働者の不足です。分析によると、今後5年間で米国のAI関連インフラを支えるには、現在の熟練労働者総数の約20%に相当する人材が新たに必要になるといいます。AI教育と職業訓練プログラムの拡充が急務です。

OpenAIは、かつての高速道路網整備やアポロ計画のように、米国には国家的な大事業を成し遂げてきた歴史があると強調します。AIという一世紀に一度の好機を掴むため、国を挙げた大胆な投資と行動が今こそ求められている、という強いメッセージを発信しているのです。

Google、AIの電力需要急増で原発を再稼働へ

AIと電力問題

AI・クラウド電力需要が急増
安定的なクリーン電力確保が課題に

Googleの解決策

電力大手NextEra Energyと協業
アイオワ州の休止原発を2029年に再稼働
Googleが再稼働投資電力コストを負担

再稼働のインパクト

600MW超のクリーン電力を供給
アイオワ州に数千人の雇用創出
AI成長とエネルギー確保の両立モデル

Googleは2025年10月27日、電力大手NextEra Energyとの協業を発表しました。アイオワ州唯一の原子力発電所を再稼働させ、急増するAIインフラ電力需要を賄います。クリーンで安定した電力確保が目的です。

生成AIの普及はデータセンター電力消費を急増させています。Google天候に左右されず24時間稼働できる原子力に着目。AI成長を支える迅速かつ大規模なクリーン電力確保策として、休止中の原発再稼働を決断しました。

発電所は2029年初頭に再稼働し、600MW超の電力を供給する計画です。契約に基づき、Googleは再稼働への投資を可能にし、発電コストを負担します。これにより、一度稼働していたプラントを迅速に活用できます。

このプロジェクトは電力確保にとどまりません。発電所の再稼働はアイオワ州に数千人規模の雇用大きな経済効果をもたらすと期待されています。ハイテク産業の成長が地域経済の活性化に直接貢献する好例となるでしょう。

Googleは他にも需要の柔軟化や次世代送電技術の導入など、多角的なエネルギー戦略を進めています。信頼性が高く拡張可能なエネルギーを迅速に確保し、持続可能なAIの発展を目指す姿勢を明確にしました。

急増AIデータセンター、電力消費と持続可能性に警鐘

巨大な電力消費と環境負荷

冷却等で膨大な電力を消費
ニューヨーク市の半分の電力を使う施設も
アイルランドでは電力の20%超を消費
環境負荷のデータは多くが企業秘密

過熱する投資とバブル懸念

テック大手による数千億ドル規模投資
供給に対し消費者需要が未成熟
会計操作による利益水増しの疑い
小型モデルなど技術革新のリスク

OpenAIマイクロソフトなど巨大テック企業が、AIの計算基盤であるデータセンターへ数千億ドル規模の投資を加速させています。しかしその裏では、膨大な電力消費による環境負荷や地域社会との軋轢、供給過剰によるAIバブルの懸念といった問題が深刻化。AIの急成長を支えるインフラの持続可能性が今、問われています。

データセンターは、AIモデルを動かすためのサーバーが詰まった巨大な倉庫です。ユーザーからの指示(クエリ)は「トークン」と呼ばれる小さなデータに分解され、GPU画像処理半導体)が並列処理で高速に応答を生成します。この一連のプロセスと、サーバーを冷却し続けるために膨大な電力が必要となります。

そのエネルギー消費量は桁外れです。例えば、Meta社が計画する新施設は、ニューヨーク市のピーク時電力の約半分に相当する電力を消費する見込みです。アイルランドでは、データセンターがすでに国の総電力の20%以上を消費。しかし、多くの企業は環境負荷に関する詳細なデータを公開しておらず、実態の把握は困難を極めます。

市場ではOpenAIの「Stargate」プロジェクトのように、数千億ドル規模の投資計画が次々と発表されています。一方で、AIサービスへの消費者支出はまだ限定的であり、供給が需要を大幅に上回るリスクが指摘されています。一部では、インフラ費用を過小に報告し、利益を水増ししているとの見方さえあります。

データセンター建設は、政治的な対立も生んでいます。政府が国策としてAI産業を後押しする一方、地域レベルでは住民の反対運動が激化。電力料金の高騰、水資源の枯渇、騒音などが主な理由です。テネシー州メンフィスでは、イーロン・マスク氏のxAIが無許可でガスタービンを設置し、地域社会から厳しい批判を浴びました。

現在の巨大投資は、「大規模モデルがAIの主流であり続ける」という前提に基づいています。しかし、より少ない計算資源で動く効率的な小型モデルや、新たなチップ設計、量子コンピューティングといった技術革新が、現在のインフラを陳腐化させる可能性も否定できません。AI業界の急激なスケール競争は、大きな不確実性をはらんでいるのです。

OpenAI、韓国AI成長戦略を提言 『主権』と『協力』が鍵

韓国の強みと機会

世界有数の半導体製造能力
高密度なデジタルインフラ
政府主導のAI国家戦略

OpenAIのデュアル戦略

自国のAI主権を構築
最先端企業との戦略的協力

主要分野への波及効果

輸出・製造業の競争力向上
医療・教育の高度化と効率化
中小企業・地方経済の活性化

OpenAIは10月23日、韓国がAIによる経済的利益を最大化するための政策提言「経済ブループリント」を発表しました。韓国が持つ半導体製造能力やデジタルインフラといった強みを活かし、世界有数のAI大国へと飛躍するための道筋を示すものです。提言の核心は、自国でAI基盤を固める「AI主権」の構築と、最先端企業と連携する「戦略的協力」を両立させるアプローチにあります。

なぜ今、韓国が注目されるのでしょうか。同国は世界トップクラスの半導体製造技術、高密度なデジタルインフラ、優秀な人材、そしてAIを国家の優先課題とする政府の強力な支援という、AI先進国となるための要素を兼ね備えています。OpenAIは既にサムスンやSKと連携し、次世代AIデータセンターの構築も視野に入れています。

提言の中心となるのが「デュアルトラック・アプローチ」です。一つは、基盤モデルインフラ、データ統治において自国の能力を高める「AI主権」の追求。もう一つは、OpenAIのような最先端AI開発者と協業し、最新技術へのアクセスを確保する「戦略的協力」です。これらは相互に補完し合い、韓国独自のAIエコシステムを強化すると分析されています。

この戦略が実現すれば、経済全体に大きな効果が期待されます。例えば、半導体や自動車といった輸出産業では、AIによる設計最適化やスマート工場化で国際競争力が高まります。また、高齢化が進む医療分野では臨床医の負担軽減、教育分野では個別最適化された学習の提供が可能になるでしょう。

中小企業や地方経済の活性化も重要なテーマです。手頃な価格のAIアシスタントが事務作業や輸出関連手続きを代行することで、中小企業はより付加価値の高い業務に集中できます。これにより、ソウル一極集中ではない、均衡の取れた成長を促進する狙いがあります。

成功の鍵は「安全な導入のスピード」です。そのためには、大規模な計算インフラの整備、データガバナンスの確立、国際標準に準拠した政策環境の整備が不可欠となります。これらを迅速に進めることで、韓国は単なるAI導入国に留まらず、他国に輸出可能な「AI国家パッケージ」を開発できるとOpenAIは見ています。

OpenAIのクリス・レヘインCGAO(最高国際渉外責任者)は「韓国はその強みを活かし、歴史的なリーダーシップを発揮する機会を得た」とコメント。このブループリントは、韓国がAI分野で世界をリードする「標準設定者」となるための、具体的かつ野心的なロードマップと言えるでしょう。

Google、初のCCS発電所支援で脱炭素を加速

初のCCSプロジェクト契約

米イリノイ州のガス発電所を支援
発電電力大部分を購入
CO2排出量の約90%を回収
2030年初頭の商業運転開始

技術普及への狙い

安定したクリーン電力源を確保
技術普及とコスト低減を加速
IEAなども有効性を承認
排出量報告の透明性を重視

Googleは2025年10月23日、炭素回収・貯留(CCS)技術を導入したガス発電所を支援する初の企業契約を締結したと発表しました。イリノイ州の「Broadwing Energy」プロジェクトから電力の大部分を購入し、データセンターを支える安定したクリーン電力網の構築を目指します。この取り組みは、CCS技術の商用化を加速させる画期的な一歩となります。

なぜ今、CCSなのでしょうか。再生可能エネルギー天候に左右される一方、CCS付きガス発電は24時間365日稼働できる「クリーンで安定したベースロード電源」として期待されています。国際エネルギー機関(IEA)なども、電力部門や製造業の脱炭素化に不可欠な技術としてその有効性を認めています。

今回のプロジェクトは、プロジェクト開発者LCIとの連携で進められます。発電容量400MW超の新設プラントから排出されるCO2の約90%を回収し、併設された米農産物大手ADM社の施設で地下1.6km超の深さに永久貯留します。2030年初頭の商業運転開始を予定しています。

このプロジェクトは環境面だけでなく、地域経済にも大きな利益をもたらします。今後4年間で推定750人の常勤雇用を創出し、プラント稼働後も数十人規模の恒久的な雇用を支える見込みです。Googleは、地域社会との連携を重視しながら開発を進める方針です。

Googleはこの協業を通じ、CCS技術の性能向上やコスト低減を加速させ、世界的な普及を目指します。プロジェクトの環境健全性を担保するため、排出量報告の透明性も重視します。AIによる効率化と並行してクリーンエネルギー技術ポートフォリオを拡充し、脱炭素社会の実現を多角的に推進する構えです。

OpenAI、日本のAI成長へ経済ブループリント公表

AI成長を支える3つの柱

あらゆる層へのAIアクセス提供
戦略的なインフラ投資の加速
大規模な再教育プログラムの実施

期待される経済効果と課題

経済価値100兆円超の創出
GDPを最大16%押し上げる可能性
デジタルと環境(GX)の両立

AI開発をリードするOpenAIは10月22日、日本がAIの潜在能力を最大限に引き出すための政策フレームワーク『日本経済ブループリント』を公表しました。この提言は、日本のイノベーションを加速させ、国際競争力を強化し、持続可能で包括的な経済成長を達成することを目的としています。官民学の連携を促し、AIが全世代に利益をもたらす社会の実現を目指します。

ブループリントは、AIによる広範な成長を実現するための3つの柱を掲げています。第一に、中小企業から公的機関まで誰もがAIの恩恵を受けられる『包摂的なアクセス』の確保。第二に、データセンター半導体製造といった『戦略的なインフラ投資』の加速。そして第三に、全世代を対象とした『教育と生涯学習』の推進です。

AIの導入は、日本経済に大きな変革をもたらす可能性があります。独立した分析によれば、AIは日本経済に100兆円を超える付加価値をもたらし、GDPを最大で16%押し上げる潜在力を持つと推定されています。日本がこの歴史的な好機をいかに大胆に掴み、世界のAIリーダーとしての地位を確立できるかが問われています。

変革はすでに始まっています。製造業では検査コストの削減、医療・介護現場では事務作業の軽減が実現しつつあります。また、教育分野ではAIチューターが個別学習を支援し、さいたま市や福岡市などの自治体では行政サービスの向上にAIが活用されています。これらは単なる効率化に留まらず、日本の創造性を増幅させる未来を示唆しています。

この成長を実現するには、デジタルと物理的なインフラへの持続的な投資が不可欠です。日本データセンター市場は2028年までに5兆円を超えると予測され、エネルギー需要も比例して増加します。そのため、デジタル変革(DX)と環境変革(GX)を両立させ、計算資源とグリーンエネルギー供給を一体で成長させる長期的戦略が求められます。

OpenAIは、日本のイノベーションと倫理を両立させるアプローチが、責任あるAI活用世界的なモデルになり得ると考えています。このブループリントは、日本のAIエコシステムの成長と共に進化する『生きた文書』です。官民が一体となり、AIがもたらす恩恵を社会全体で分かち合う未来の実現が期待されます。

Google、AIデータセンターの水問題に新対策

Googleの水インフラ貢献

オレゴン州に新貯水システムを建設
雨季の水を貯留し乾季に活用
干ばつに備え水の安定供給を実現
年間1億ガロン以上の水確保

AIと地域社会の共存

データセンターの安定稼働が目的
施設の所有権と水利権を市に譲渡
企業の社会的責任を果たす新モデル

Googleは2025年10月22日、アメリカ・オレゴン州ザ・ダレス市で、新しい水インフラプロジェクトの完成を発表しました。AIサービスを支えるデータセンターの安定稼働と地域貢献を目的に、貯水システムを建設し、その所有権と水利権を市に恒久的に譲渡します。

完成したのは「帯水層貯留・回復(ASR)」と呼ばれるシステムです。これは雨季に流出してしまう水を地下の帯水層に貯留し、乾季に必要な時に汲み上げて利用する仕組みです。いわば「水の貯金口座」であり、干ばつに対する地域の耐性を高める効果が期待されます。

Googleは同市で、クラウドやYouTubeなど世界的なAIサービスを支える大規模データセンターを運営しています。データセンターは冷却に大量の水を消費するため、水資源の確保は事業継続の生命線です。今回の投資は、その課題への先進的な解決策と言えるでしょう。

このプロジェクトにより、ザ・ダレス市は年間で1億ガロン(約3.8億リットル)以上の追加水資源を確保できます。Googleは施設だけでなく関連する地下水利権も市に譲渡しており、地域社会全体の水セキュリティ向上に直接的に貢献する形となります。

デジタル化が進む現代において、データセンターの重要性は増す一方です。しかし、その環境負荷、特に水消費は大きな課題となっています。今回のGoogleの取り組みは、テクノロジー企業と地域社会が共存するための新しいモデルケースとして、注目を集めそうです。

SKテレコム、新設AI部門で希望退職を提示

AI部門設立直後の再編

9月下旬に新AI部門を設立
設立数週間で希望退職を提示
対象は全従業員約1,000人
会社側はリストラを否定

AI事業強化への布石

複数部門を新組織へ統合
重複する役割や機能を効率化
2030年に売上5兆ウォン目標
OpenAIとの連携も推進

韓国の通信大手SKテレコムが、9月下旬に新設したAI部門「AI CIC」において、希望退職プログラムを提示したことが明らかになりました。これは同社が進めるAI関連部門の統合・再編の一環であり、設立からわずか数週間での異例の動きとして注目されています。

同社広報は、今回のプログラムはリストラや人員削減が目的ではないと強調しています。あくまでも組織再編に伴い、役割や勤務地が変更となる可能性のある従業員への支援策であると説明。参加は完全に任意であり、強制的な解雇は含まれないとのことです。

プログラムの詳細は、若手からベテランまで全部門の従業員に伝えられています。AI部門には約1,000人が在籍していると報じられており、退職を選択しない従業員は、地方オフィスへ再配置される可能性があるとしています。

今回の動きの背景には、社内に分散していたAI関連部門を「AI CIC」という統括組織に集約する狙いがあります。これにより、重複する役割や機能を整理し、より効率的な事業運営を目指します。パーソナルAIアシスタント「A.」の開発やAIデータセンター事業などがこの新部門に集約されます。

SKテレコムはAI事業を今後の成長の柱と位置付けており、AI部門で2030年までに年間売上5兆ウォン(約35億ドル)を達成する目標を掲げています。最近ではNVIDIAGPUサービスや、OpenAI提携したAIデータセンター開発を発表するなど、インフラ投資も加速させています。

AIデータセンター、フラッキングガスで稼働の現実

AIの巨大な電力需要

西テキサスに巨大データセンター建設
フーバーダム級の電力ガスで発電
OpenAIもガス火力発電所を併設

環境と地域社会への影響

ブルドーザーによる自然環境の破壊
干ばつ地域での水消費への懸念
騒音や光害など住民生活への影響

推進される化石燃料利用

中国との競争を背景に開発を正当化
米政府も許認可を迅速化し後押し

AIの爆発的な成長を支える巨大データセンターが、環境負荷の高いフラッキングガス(水圧破砕法による天然ガス)で稼働している実態が明らかになりました。PoolsideやOpenAIなどのAI企業が、米テキサス州などで化石燃料を直接利用する発電所を併設した施設を次々と建設。その背景には、中国との技術覇権争いがあります。

AIコーディング支援のPoolsideは、西テキサスにニューヨークのセントラルパークの3分の2に及ぶ広大なデータセンターを建設中です。ここではフーバーダムに匹敵する2ギガワット電力を、近隣のパーミアン盆地で採掘された天然ガスを燃やして賄います。OpenAIの巨大プロジェクト「スターゲイト」も同様の戦略をとっています。

こうした開発は、地域社会に深刻な影響を及ぼしています。建設のために広大な自然がブルドーザーで破壊され、干ばつの続く地域では貴重な水資源の消費が懸念されています。建設に伴う騒音や夜間の照明は、静かな生活を求めてきた住民の暮らしを一変させているのです。

なぜ化石燃料への依存が進むのでしょうか。OpenAI幹部は、中国エネルギーインフラ増強に対抗し、国家の再工業化を進める必要性を主張します。米政府も2025年7月の大統領令で、ガス火力AIデータセンターの許認可を迅速化し、再生可能エネルギーを除外する形でプロジェクトを後押ししています。

一方で、こうした大規模なガス発電所の新設は必ずしも必要ないとの指摘もあります。デューク大学の研究によれば、電力会社は年間を通じて利用可能な容量の約半分しか使っていません。データセンターがピーク時の電力消費を少し抑えるだけで、既存の電力網で需要を吸収できる可能性があるのです。

将来的には小型モジュール炉や太陽光、核融合への期待も高まっていますが、実用化には数十年を要する可能性があります。それまでの間、AIの発展は化石燃料への依存と環境負荷という不都合な真実を抱え続けることになります。そのコストを誰が負担するのか、という重い問いが突きつけられています。

AIデータセンター宇宙へ、コスト10分の1の衝撃

宇宙設置の圧倒的メリット

エネルギーコストを10分の1に削減
ほぼ無尽蔵の太陽光エネルギー
冷却水不要、真空で自然冷却
CO2排出量を大幅に削減

軌道上AI処理が拓く未来

初のデータセンターGPUを搭載
地球観測データをリアルタイム分析
応答時間を数時間から数分へ
災害検知や気象予測に応用

米国ワシントン州のスタートアップStarcloud社が、2025年11月にNVIDIAのH100 GPUを搭載したAI衛星を打ち上げます。これは、宇宙空間にデータセンターを構築するという壮大な計画の第一歩です。地球上のデータセンターが抱えるエネルギー消費や冷却の問題を、ほぼ無尽蔵の太陽光と宇宙の真空を利用して解決し、エネルギーコストを地上比で10分の1に削減することを目指します。

AIの需要急増は、データセンター電力消費と冷却という大きな課題を生んでいます。Starcloud社はこの解決策を宇宙に求めました。軌道上では太陽光エネルギー源とし、宇宙の真空を無限のヒートシンクとして利用。冷却水が不要となり、エネルギーコストは地上設置に比べ10分の1にまで削減可能と試算しています。

11月に打ち上げ予定の衛星「Starcloud-1」は、小型冷蔵庫ほどの大きさながら、データセンタークラスのGPUであるNVIDIA H100を搭載。これにより、従来の宇宙での処理能力を100倍以上上回るコンピューティングが実現します。最先端GPUが宇宙空間で本格稼働するのは、これが史上初の試みとなります。

宇宙データセンターの主な用途は、地球観測データのリアルタイム分析です。衛星が収集した膨大なデータをその場でAIが処理し、山火事の早期発見気象予測に活かします。地上へのデータ転送が不要になるため、災害対応などの応答時間を数時間から数分へと劇的に短縮できる可能性があります。

Starcloud社のフィリップ・ジョンストンCEOは「10年後には、ほぼ全ての新設データセンターが宇宙に建設されるだろう」と予測します。同社は次世代のNVIDIA Blackwellプラットフォーム統合も視野に入れており、軌道上でのAI性能はさらに飛躍する見込みです。宇宙がAIインフラの新たなフロンティアとなる未来は、もう目前に迫っています。

新興Nscale、MSとGPU20万基の供給で大型契約

大規模なAIインフラ契約

AI新興NscaleがMSと契約
NvidiaGB300 GPUを約20万基供給
AIの計算需要増に対応

米国・欧州4拠点への展開

米国テキサス州に10.4万基
ポルトガル、英国、ノルウェーにも展開
2026年から順次稼働開始

2024年設立の新興企業

設立から1年足らずで大型契約
NvidiaやNokiaなどが出資

AIインフラの新興企業Nscaleは10月15日、マイクロソフトと大規模な契約を締結したと発表しました。この契約に基づき、NscaleはNvidia製の最新GPU「GB300」を約20万基、米国および欧州データセンターに展開します。急増するAIの計算需要に対応するための動きです。

今回の契約は、AI開発に不可欠な計算資源を確保する上で極めて重要な意味を持ちます。Nscaleは、同社が所有・運営する施設と、投資家であるAker社との合弁事業を通じて、世界最先端のAIインフラマイクロソフトに提供する計画です。

GPUの展開は4つの拠点で行われます。まず、米国テキサス州のデータセンター10万4000基を今後12〜18ヶ月で納入。さらに、ポルトガルに1万2600基、英国に2万3000基、ノルウェーに5万2000基を順次展開する予定です。

注目すべきは、Nscaleが2024年に設立されたばかりのスタートアップである点です。同社は設立以来、Aker、Nokia、Nvidiaなどの戦略的パートナーから17億ドル(約2500億円)以上を調達しており、その急成長ぶりがうかがえます。

Nscaleの創業者兼CEOであるジョシュ・ペイン氏は、「この合意は、我々が世界の最重要テクノロジーリーダーの選択すべきパートナーであることを裏付けるものだ」と述べ、大規模なGPU展開を実行できる能力と経験を強調しました。

AIモデルの高性能化に伴い、GPUの確保競争は激化しています。最近ではOpenAIがAMDやNvidiaと大規模なチップ供給契約を結ぶなど、大手テック企業による計算インフラへの投資が相次いでおり、今回の契約もその潮流の中に位置づけられます。

Meta、AIインフラ強化でArmと提携し効率化へ

提携の狙い

AIシステムを効率的に拡大
ランキング・推薦システムを移行
Armの低消費電力という強み

Metaの巨大インフラ投資

需要増に対応するデータセンター網拡張
オハイオ州で数GW規模のプロジェクト
ルイジアナ州で5GW規模の巨大施設

Nvidiaとは異なる提携

Nvidiaのような資本提携はなし
技術協力に特化した柔軟な連携モデル

ソーシャルメディア大手のMetaは2025年10月15日、半導体設計大手Armとの提携を発表しました。これは、AIサービスの需要急増に対応するため、自社のAIインフラを効率的に拡張する狙いがあります。具体的には、Metaのランキング・推薦システムをArmの「Neoverse」プラットフォームに移行させ、30億人を超えるユーザーへのサービス提供を強化します。

今回の提携の鍵は、Armのワットパフォーマンス(消費電力あたりの性能)の高さです。AIの次の時代は「大規模な効率性」が定義するとArmは見ており、Metaはこの強みを活用してイノベーションを加速させます。GPU市場を席巻するNvidiaなどとは異なり、Armは低消費電力という独自の強みを武器に、AIインフラ市場での存在感を高めています。

この動きは、Metaが進める前例のない規模のインフラ拡張計画の一環です。同社はAIサービスの将来的な需要を見越し、データセンター網を大幅に拡大しています。オハイオ州では数ギガワット級のプロジェクトが進行中。さらにルイジアナ州では、完成すれば5ギガワットの計算能力を持つ巨大キャンパスの建設が2030年まで続きます。

このパートナーシップが注目されるのは、近年の他のAIインフラ取引とは一線を画す点です。NvidiaOpenAIなどに巨額投資を行うなど、資本関係を伴う提携が相次いでいるのとは対照的に、MetaとArmの間では株式の持ち合いや大規模な物理インフラの交換は行われません。技術協力に特化した、より柔軟な連携モデルと言えるでしょう。

ソブリンAI、米中技術覇権の新たな主戦場に

米国のソブリンAI戦略

OpenAIが各国政府と提携
国家によるAI統制を支援
非民主主義国との連携に懸念も

中国のオープンソース攻勢

Alibabaのモデルは3億DL超
来年には米国を凌駕する可能性

真のAI主権をめぐる論点

主権にはオープンソースが必須との声
クローズドとオープンの両立も可能

OpenAIをはじめとするテクノロジー企業が、「ソブリンAI」の構築支援を各国で進めています。ソブリンAIとは、各国が自国の管理下でAIインフラを開発・運用する能力を指し、米中間の技術覇権争いの新たな主戦場となりつつあります。米国が同盟国との連携を深める一方、中国オープンソースモデルで世界的な影響力を急速に拡大しています。

OpenAIはアラブ首長国連邦(UAE)などの政府と提携し、大規模なデータセンター建設を含むソブリンAIシステム構築を支援しています。この動きは米国政府とも連携しており、同盟国が中国の技術に依存するのを防ぐという戦略的な狙いがあります。米国の技術を世界に普及させることで、地政学的な優位性を確保しようとしています。

しかし、UAEのような非民主主義国との提携には懸念の声も上がっています。かつて米国は、経済的な関与が中国の民主化を促すと期待しましたが、結果的に権威主義体制を強めることになりました。AI技術の提供が同様の結果を招かないか、過去の教訓が問い直されています。OpenAIは政府からの要請があっても情報検閲は行わないと明言しています。

対する中国は、オープンソース戦略で猛追しています。AlibabaやTencent、DeepSeekといった企業が公開した高性能な基盤モデルは、世界中で広く採用されています。特にAlibabaの「Qwen」ファミリーは3億回以上ダウンロードされ、日本を含む各国のスタートアップが自国語対応モデルの開発基盤として活用しています。

オープンソースAIモデルをホストするHugging FaceのCEOは、「真の主権はオープンソースなしにはあり得ない」と指摘します。モデルの内部を完全に検証・制御できるためです。中国企業はこの戦略により驚異的な速さで技術力を向上させ、5年前の遅れを取り戻し、今や米国と互角のレベルに達したと分析されています。

AIの国家主権をめぐる競争は、クローズドモデルを推進する米国勢と、オープンソースで勢力を拡大する中国勢という構図を呈しています。OpenAIは両アプローチの共存が可能との見方を示していますが、どちらが次世代のグローバルスタンダードを握るのか。この動向は、各国の事業戦略を左右する重要な要素となるでしょう。

OpenAI、半導体大手BroadcomとカスタムAIハード提携

Broadcomとの戦略的提携

10GW分のカスタムAIアクセラレータ
2026年からデータセンターへ導入
モデル開発の知見をハードに反映
AIの能力と知能を新たなレベルへ

加速するインフラ投資

契約額は非公開、推定最大5000億ドル
AMDから6GW分のチップ購入
Nvidia1000億ドル投資表明
Oracleとも大型契約の報道

AI研究開発企業のOpenAIは10月14日、半導体大手のBroadcomと戦略的提携を結んだと発表しました。この提携に基づき、2026年から2029年にかけて10ギガワット相当のカスタムAIアクセラレータ・ラックを自社およびパートナーのデータセンターに導入します。独自の半導体設計により、AIモデル開発の知見をハードウェアに直接反映させ、性能向上を狙います。

OpenAIは「フロンティアモデルと製品開発から得た学びをハードウェアに直接組み込むことで、新たなレベルの能力と知能を解き放つ」と声明で述べています。ソフトウェアとハードウェア垂直統合を進めることで、AI開発のボトルネックを解消し、競争優位性を確立する狙いです。これはAI業界の大きな潮流となりつつあります。

今回の契約の金銭的条件は明らかにされていません。しかし、英フィナンシャル・タイムズ紙は、この取引がOpenAIにとって3500億ドルから5000億ドル規模にのぼる可能性があると推定しており、AIインフラへの桁外れの投資が浮き彫りになりました。

OpenAIはここ数週間でインフラ関連の大型契約を相次いで発表しています。先週はAMDから数十億ドル規模で6ギガワット分のチップを購入。9月にはNvidiaが最大1000億ドルの投資と10ギガワット分のハードウェア供給意向を表明しました。Oracleとも歴史的なクラウド契約を結んだと報じられています。

一連の動きは、AI性能向上が計算資源の確保に懸かっていることを示しています。サプライヤーを多様化し、自社に最適化されたハードウェアを手に入れることで、OpenAIは次世代AI開発競争で主導権を握り続ける構えです。業界の勢力図を大きく左右する動きと言えるでしょう。

OpenAI、アルゼンチンで巨大AIインフラ構想

巨大プロジェクト「Stargate」

南米初のStargateプロジェクト
Sur Energy社がインフラ開発を主導
クリーンエネルギーでAIインフラを稼働
OpenAI電力購入者(オフテイカー)候補

アルゼンチンのAI潜在力

ChatGPT利用者が1年で3倍増
ミレイ大統領のAI成長ビジョン
政府機関へのAI導入も協議

OpenAIは2025年10月14日、アルゼンチンのエネルギー企業Sur Energyと提携し、ラテンアメリカ初となる大規模AIデータセンターStargate」プロジェクトの建設を検討すると発表しました。クリーンエネルギーを活用し、アルゼンチンを地域のAIハブに育てるのが狙いです。この動きは、ミレイ大統領政権との協議を経て、両社が意向表明書(LOI)に署名したことで具体化しました。

この巨大プロジェクトでは、Sur Energyがエネルギー供給とインフラ開発を主導します。同社はクラウドインフラ開発企業などとコンソーシアムを形成し、データセンターエコシステム全体を、安全で持続可能なエネルギー源で稼働させる計画です。OpenAIは、主要な電力購入者(オフテイカー)となる可能性を歓迎しています。

OpenAIがアルゼンチンに注目する背景には、同国のAIに対する高い受容性があります。国内のChatGPTユーザーは過去1年で3倍以上に急増し、若年層の利用が特に活発です。また、OpenAIのツールを活用する開発者コミュニティもラテンアメリカでトップクラスの規模を誇り、AIインフラ構築の土壌が整っていると評価されています。

OpenAIインフラ開発に加え、アルゼンチン政府との連携も深めます。「OpenAI for Countries」構想の一環として、まず政府機関自体でのAI導入を協議しています。これにより、行政職員の業務を効率化し、コストを削減しながら、国民により良いサービスを提供できると期待されています。世界各地でのパートナーシップの知見が生かされるでしょう。

OpenAIサム・アルトマンCEOは、「このプロジェクトは、AIをアルゼンチンのより多くの人々の手に届けるためのものだ」と述べました。さらに、「AIがもたらす成長と創造性に対するミレイ大統領のビジョンは明確で力強い。Stargateは、その実現を後押しするだろう」と期待を表明しています。

提携先のSur Energy社は「国のユニークな再生可能エネルギーの可能性と、世界規模の重要インフラ開発を組み合わせる歴史的な機会だ」とコメントしました。この連携が、アルゼンチンを世界の新たなデジタル・エネルギー地図における重要拠点へと押し上げる可能性を秘めています。

NVIDIA、卓上AIスパコン発表 初号機はマスク氏へ

驚異の小型AIスパコン

1ペタフロップスの演算性能
128GBのユニファイドメモリ
Grace Blackwellチップ搭載
価格は4,000ドルから提供

AI開発を個人の手に

最大2000億パラメータのモデル実行
クラウド不要で高速開発
開発者や研究者が対象
初号機はイーロン・マスク氏へ

半導体大手NVIDIAは2025年10月14日、デスクトップに置けるAIスーパーコンピュータ「DGX Spark」を発表しました。ジェンスン・フアンCEO自ら、テキサス州にあるSpaceXの宇宙船開発拠点「スターベース」を訪れ、初号機をイーロン・マスクCEOに手渡しました。AI開発の常識を覆すこの新製品は、15日から4,000ドルで受注が開始されます。

DGX Sparkの最大の特徴は、その小型な筐体に詰め込まれた圧倒的な性能です。1秒間に1000兆回の計算が可能な1ペタフロップスの演算能力と、128GBの大容量ユニファイドメモリを搭載。これにより、従来は大規模なデータセンターでしか扱えなかった最大2000億パラメータのAIモデルを、個人のデスク上で直接実行できます。

NVIDIAの狙いは、AI開発者が直面する課題の解決にあります。多くの開発者は、高性能なPCでもメモリ不足に陥り、高価なクラウドサービスデータセンターに頼らざるを得ませんでした。DGX Sparkは、この「ローカル環境の限界」を取り払い、手元で迅速に試行錯誤できる環境を提供することで、新たなAIワークステーション市場の創出を目指します。

この卓上スパコンは、多様なAI開発を加速させます。例えば、高品質な画像生成モデルのカスタマイズや、画像の内容を理解し要約する視覚言語エージェントの構築、さらには独自のチャットボット開発などが、すべてローカル環境で完結します。アイデアを即座に形にできるため、イノベーションのスピードが格段に向上するでしょう。

DGX Sparkは10月15日からNVIDIAの公式サイトやパートナー企業を通じて全世界で注文可能となります。初号機がマスク氏に渡されたのを皮切りに、今後は大学の研究室やクリエイティブスタジオなど、世界中のイノベーターの元へ届けられる予定です。AI開発の民主化が、ここから始まろうとしています。

OpenAI、Broadcomと共同でAIチップを開発・導入

OpenAIとBroadcomの提携

自社設計のAIアクセラレータ開発
Broadcomと共同でシステム構築
10ギガワットの導入を目指す
2026年後半から導入開始

戦略的背景と目的

Nvidiaへの依存低減が目的
モデル知見をハードウェアに組み込み
AI需要の急増に対応
AMD、Nvidiaとも提携済み

OpenAIは13日、半導体大手のBroadcomと戦略的提携を結び、自社で設計したAI向け半導体「アクセラレータ」の開発・導入を進めると発表しました。この提携は、AI計算に対するNvidiaへの依存を低減し、将来的なAI需要の急増に備えるための重要な一手です。

両社が共同で開発・導入を目指すのは、計10ギガワット規模のAIアクセラレータです。これは原子力発電所約10基分の電力に相当する膨大な計算能力を意味します。Broadcomは半導体の製造と、データセンターを繋ぐネットワーク機器の提供を担当します。

OpenAIサム・アルトマンCEOは「AIの可能性を解き放つための基盤構築に不可欠なステップだ」と述べています。自社でチップを設計することで、最先端のAIモデル開発で得た知見を直接ハードウェアに組み込み、新たな性能と知能を解き放つことを目指します。

この動きはOpenAIだけのものではありません。MetaGoogleといった巨大テック企業も、自社のAIサービスに最適化したカスタムチップの開発を急進させています。OpenAIも既にAMDやNvidiaと大規模な提携を結んでおり、サプライヤーの多元化を戦略的に進めています。

プロジェクトのスケジュールも明らかになりました。Broadcomによる機器の導入は2026年下半期から開始され、2029年末までに完了する予定です。これにより、OpenAIChatGPTSoraといったサービスを支える計算基盤を強化していきます。

Broadcomのホック・タンCEOは「AGI人工汎用知能)の追求における転換点だ」と協業の重要性を強調。同社にとっては、AIインフラ市場でのリーダーシップを確立する絶好の機会となります。両社の協力関係が、次世代のAI開発を加速させることになるでしょう。

NVIDIA、パーソナルAIスパコンを発売

製品概要と性能

10月15日より販売開始
価格は3999ドル
デスクトップサイズの超小型
1ペタフロップのAI性能
最大2000億パラメータに対応

市場への影響

AIの民主化を促進
研究者や学生向けに最適

エコシステム

各社がカスタム版を発売
AcerやASUSなどが参入
標準コンセントで動作

NVIDIAが10月15日より、卓上で使えるパーソナルAIスーパーコンピューター「DGX Spark」の販売を開始します。価格は3999ドルで、オンラインや一部パートナー店で購入可能です。

同社最高峰のGB10 Grace Blackwellスーパーチップを搭載。AI性能は1ペタフロップに達し、最大2000億パラメータのモデルを扱える高い処理能力を備えています。

これまで大規模なデータセンターが必要だった計算能力を個人のデスクに。AI研究者や学生が手軽に高度なAI開発に取り組める環境を提供し、AIの民主化を目指します。

NVIDIAは他社によるカスタム版も認めており、AcerやASUS、デルなど主要PCメーカー各社が同様のモデルを同価格で展開。市場の拡大が見込まれます。

個人でも利用可能な高性能なAIスパコンの登場は、今後のAI開発やビジネス活用の加速に大きく貢献するでしょう。

NVIDIA主導、次世代AI工場の設計図公開

新世代AIインフラの設計

`Vera Rubin NVL144`サーバー開発
`Kyber`ラックでGPU高密度化
`100%液冷`設計を採用
AIエージェント向けの高性能化

電力効率を大幅向上

`800VDC`への電圧移行
従来比`150%`以上の電力伝送
銅使用量を`大幅削減`
データセンターの省エネ化

強力なパートナー連携

`50社以上`のパートナーが支援
`Intel`や`Samsung`も参画
オープン標準で開発を加速

NVIDIAとパートナー企業は、AIの推論需要拡大に対応する次世代AI工場の設計図を公開しました。10月13日にサンノゼで開催されたOCPグローバルサミットで発表されたもので、`800VDC`への電圧移行や`100%液冷`技術が核となります。オープンなエコシステムによる開発で、AIインフラの効率と性能を飛躍的に高める狙いです。

新世代の基盤となるのが、サーバー「Vera Rubin NVL144」と、576個のGPUを搭載可能な「Kyber」ラックです。これらはAIエージェントなど高度な推論処理を想定しており、垂直配置のコンピュートブレードにより、ラックあたりのGPU密度を最大化します。

最大の革新は電力システムです。従来の交流から`800ボルトの直流`(800VDC)へ移行することで、電力伝送効率が150%以上向上します。これにより、銅の使用量を削減し、データセンターの省スペースとコスト削減を実現します。

この挑戦はNVIDIA単独では成し遂げられません。FoxconnやHPE、Vertivなど50社以上のパートナーが、MGXサーバーや800VDC対応の部品、電力システムを開発しています。オープンな標準規格が、迅速な市場投入を可能にしています。

エコシステムはさらに広がりを見せています。IntelやSamsung Foundryが、NVIDIAの高速接続技術「NVLink Fusion」に参画。各社が開発する独自チップNVIDIAインフラにシームレスに統合し、AIファクトリーの多様化と高速化を後押しします。

NVIDIAが描くのは、特定の企業に閉じない未来です。オープンな連携と標準化が、ギガワット級の巨大AIファクトリーの構築を加速させます。これは、AI時代のインフラにおける新たなパラダイムシフトと言えるでしょう。

Google、サウスカロライナ州に90億ドル投資 AIインフラ強化

投資の概要

総額90億ドル投資
2027年までの投資計画

地域貢献・人材育成

データセンター拡張・新設
AIツール導入の研修支援
160人以上の見習い生育成

戦略的意義

州のデジタル経済を牽引
米国のAIリーダーシップ貢献

Googleは2027年までにサウスカロライナ州において最大90億ドル投資すると発表しました。この投資は、同州におけるAIインフラの大規模な拡充を目的としており、データセンターの増強と新設が中核となります。

資金は、バークリー郡の既存データセンター拡張と、ドーチェスター郡における2つの新サイト建設継続に充てられます。これにより、サウスカロライナ州は米国の重要なインフラハブとしての役割を一層強化することになります。

Googleは、経済成長の果実を地域に還元するため、電気技術者研修団体(ETA)に助成金を提供します。AIツールを研修プログラムに統合し、160名以上の見習い生が将来のテクノロジー分野で活躍できるよう支援するのです。

この投資は新たな雇用創出に繋がるだけでなく、州のデジタル経済を長期的に支える基盤となります。米国全体のAIイノベーションにおけるリーダーシップを確固たるものにする、戦略的な一手と言えるでしょう。

今回の発表は、英国やベルギーなどでの国際投資、そして米国内における継続的な大規模インフラ投資の一環です。GoogleがグローバルでAI基盤の強化を優先していることの表れと言えます。

AI時代のストレージ、SSDが主役へ

ストレージのボトルネック

AI需要でデータが「温かく」なる
HDDは低遅延処理に不向き
並列計算に性能不足
GPU活用を阻害する要因に

SSD導入のメリット

消費電力を大幅に削減
データセンター占有面積を9分の1に
建設資材のCO2を8割削減
GPUのさらなる規模拡大を可能

AIの普及が加速し、データセンターは深刻なストレージのボトルネックに直面しています。かつて保管されていたコールドデータが、AIモデルの精度向上のために頻繁に利用される「温かいデータ」へと変化。この転換に対応するため、低遅延で高性能なSSD(ソリッドステートドライブ)への移行が、AI時代のインフラ構築における必須戦略となっています。

従来のHDDは、多くの可動部品を持つため、AIが求める低遅延処理や高いIOPS(入出力操作)に対応できません。特にデータへの物理的アクセスが伴う遅延は、リアルタイムな推論や学習の障害となります。大規模化すればするほど、消費電力や冷却コストも増加するのです。

一方、高容量SSDは性能と効率で大きく上回ります。ある研究では、エクサバイト規模のストレージでSSDはHDD比で消費電力を77%削減データセンターの占有面積も9分の1に抑えられ、省電力・省スペース化で浮いたリソースをGPUの規模拡大に再投資できるのです。

この省スペース化は、サステナビリティにも貢献します。データセンター建設に必要なコンクリートや鋼材の使用量を8割以上削減できるほか、運用終了後のドライブ廃棄数も9割減少。環境負荷の低減が、企業価値向上にも繋がるのです。

これは単なるハードウェアの刷新ではなく、インフラ戦略の根本的な再構築です。今後は、GPUサーバーの熱管理に不可欠な液冷技術とSSDを組み合わせるなど、AIの要求に応える効率的な設計が主流となるでしょう。今こそ、ストレージ戦略を見直す時です。

スナク元英首相、巨大テック2社顧問就任に懸念

元首相のテック界転身

MicrosoftAnthropic顧問に就任
首相在任中の機密情報利用を懸念
政府への不当な影響力も指摘

加速する政界とIT界の接近

スナク氏の元側近もAnthropic在籍
Meta社には元副首相ニック・クレッグ氏
米国でも活発な「回転ドア」現象

スナク氏側の対応策

英国内の政策助言やロビー活動は回避
報酬は自身が設立した慈善団体へ全額寄付

英国のリシ・スナク前首相が、IT大手のマイクロソフトとAI新興企業Anthropicのシニアアドバイザーに就任したことが明らかになりました。首相在任中の機密情報が企業に不当な利益をもたらすのではないかという利益相反の懸念が議会諮問委員会から指摘されており、政界と巨大テック企業の接近が改めて問われています。

議会の企業活動諮問委員会(Acoba)は、スナク氏が首相として得た特権的な情報が、マイクロソフトに「不当な優位性」を与える可能性があると警鐘を鳴らしました。特にAI規制の議論が世界的に活発化する中での就任であり、その影響が注視されます。

スナク氏とマイクロソフトの関係は首相在任中に遡ります。2023年には、同社による英国での25億ポンド(約4,800億円)規模データセンター投資計画を発表しており、両者の密接な関係が今回の懸念の背景にあるとの見方もあります。

一方、スナク氏はこれらの懸念に対し、英国の政策に関する助言は行わず、マクロ経済や地政学的な動向に関する大局的な視点を提供することに留めると説明。ロビー活動も行わないとしています。また、報酬は自身が設立した慈善団体に全額寄付する意向です。

英国の政治家がIT大手に転身する「回転ドア」と呼ばれる現象は、これが初めてではありません。スナク政権の元上級政治顧問もAnthropicに在籍。また、元自由民主党副首相のニック・クレッグ氏は、Meta社でグローバル問題担当プレジデントを務めていました。

このような政界からテクノロジー業界への人材流出は、国境を越えた潮流です。米国でも、政府高官がMetaマイクロソフトの要職に就く例は後を絶ちません。政策決定に携わった人物がその知見を民間企業でどう活かすか、その透明性が今後も問われそうです。

エネルギー業界のAI革命、ADIPEC 2025で加速

AIがもたらす変革

運用コスト10-25%削減
生産性3-8%向上
エネルギー効率5-8%改善
予知保全でダウンタイム削減

ADIPEC 2025の焦点

世界最大のエネルギーイベント
技術論文の2割がAI関連
特設「AIゾーン」で最新技術集結
電力需要増など課題も議論

2025年11月3日から6日にかけて、アラブ首長国連邦のアブダビで世界最大のエネルギーイベント「ADIPEC 2025」が開催されます。今年のテーマは「エネルギー、インテリジェンス、インパクト」。人工知能(AI)がエネルギー業界のコスト削減や効率化をどう加速させるか、またAI自身の電力需要急増という課題にどう向き合うか、世界中から20万人以上の専門家が集い、未来のエネルギー戦略を議論します。

AIはエネルギー業界の変革を強力に推進しています。AIと自動化技術の導入により、運用コストは10〜25%削減され、生産性は3〜8%向上。さらにエネルギー効率も5〜8%改善されるなど、具体的な成果が報告されています。予知保全による設備の安定稼働や、リアルタイムのデータ分析に基づく最適化は、もはや試験段階ではなく、現場全体で導入が進むフェーズに入っています。

一方で、AIは「両刃の剣」でもあります。AIモデルの学習や推論には膨大な計算能力が必要で、データセンター電力需要を記録的な水準に押し上げています。この電力需要の急増は、送電網の安定性やデータセンターの立地選定など、新たな課題を生み出しました。AIによる効率化と、AIを支える電力確保のバランスが、業界全体の重要テーマとなっています。

ADIPEC 2025では、こうしたAIの光と影の両側面が主要議題となります。MicrosoftやHoneywellなどの巨大テック企業から革新的なスタートアップまでが集う特設「AIゾーン」では、最新のソリューションが披露されます。また、技術カンファレンスに提出された論文の約2割がAI関連であり、実践的な応用事例や課題解決策について活発な議論が期待されます。

エネルギー業界のリーダーにとって、ADIPEC 2025はAIの可能性と課題を体系的に理解し、自社の戦略に落とし込む絶好の機会となるでしょう。政策、資本、技術の各視点から未来のエネルギー像を議論するこの場で、対話が具体的な行動へと変わり、ビジョンが現実のインパクトを生み出すことが期待されています。

脱・大手クラウド、分散ストレージTigrisが挑戦

AI時代の新たな課題

AI需要で分散コンピューティングが急増
ストレージは大手クラウド集中
コンピューティングとデータの距離が課題に

Tigrisが提供する価値

GPUの近くにデータを自動複製
低レイテンシでAIワークロードを高速化
高額なデータ転送料金を回避

成長と今後の展望

シリーズAで2500万ドルを調達
欧州・アジアへデータセンター拡大計画

米国スタートアップTigris Dataが、シリーズAラウンドで2500万ドルを調達しました。同社は、AIの普及で需要が急増する分散コンピューティングに対応するため、AWSなど大手クラウドが抱える高コスト・高遅延の問題を解決する分散型データストレージを提供。大手からの脱却を目指す企業の新たな選択肢として注目されています。

生成AIの台頭で、コンピューティングパワーは複数のクラウドや地域に分散する傾向が加速しています。しかしデータストレージの多くは依然として大手3社に集中。この「コンピューティングとデータの距離」が、AIモデルの学習や推論における遅延のボトルネックを生み出しているのです。

Tigrisは、GPUなど計算資源の近くにデータを自動で複製・配置するAIネイティブなストレージ網を構築。これにより開発者低レイテンシでデータにアクセスでき、AIワークロードを高速かつ低コストで実行可能になります。顧客は、かつて支出の大半を占めたデータ転送料金を不要にできたと証言します。

大手クラウドは、顧客がデータを他サービスへ移行する際に高額な「データ転送料金」を課してきました。TigrisのCEOはこれを「より深い問題の一症状」と指摘。中央集権型のストレージ自体が、分散・高速化するAIエコシステム要求に応えられていないと強調します。

企業がTigrisを選ぶもう一つの動機は、データ主権の確保です。自社の貴重なデータをAI開発に活用する上で、外部のプラットフォームに依存せず、自らコントロール下に置きたいというニーズが高まっています。特に金融やヘルスケアなど規制の厳しい業界でこの傾向は顕著です。

今回の資金調達はSpark Capitalが主導し、Andreessen Horowitzなども参加。Tigrisは調達資金を元に、既存の米国内3拠点に加え、ヨーロッパやアジアにもデータセンターを拡大する計画です。2021年の設立以来、年8倍のペースで成長しており、今後の展開が期待されます。

NVIDIA、GeForce NOWで期待の新作BF6を即日配信

RTX 5080で新作を体験

期待作『Battlefield 6』が発売日に対応
RTX 5080の性能をクラウドで提供
超低遅延ストリーミングで快適プレイ
『Morrowind』など計6タイトルが追加

Discord連携で手軽に試遊

Discordから直接ゲーム起動が可能に
第一弾は人気作『Fortnite』
ダウンロードや会員登録が不要で試せる

グローバルインフラを増強

米・英の3新拠点でRTX 5080導入へ

NVIDIAは2025年10月10日、クラウドゲーミングサービス「GeForce NOW」にて、エレクトロニック・アーツの期待作『Battlefield 6』を発売と同時に配信開始します。最新GPU「GeForce RTX 5080」の性能を活用し、デバイスを問わず高品質なゲーム体験を提供。あわせて、Discordとの連携強化やグローバルデータセンターの増強も発表され、プラットフォームの進化が加速しています。

今回の目玉は、人気シリーズ最新作『Battlefield 6』への即日対応です。これにより、ユーザーは高性能なPCを所有していなくても、クラウド経由で最新ゲームを最高品質で楽しめます。RTX 5080によるパワフルな処理能力は、最大240fpsという滑らかな映像と超低遅延のストリーミングを実現し、競技性の高いゲームプレイでも快適な環境を提供します。

ユーザー体験を革新するのが、コミュニケーションツール「Discord」との連携です。第一弾として『Fortnite』が対応し、Discord上のチャットからダウンロード不要で直接ゲームを起動・試遊できるようになりました。コミュニティ内でのゲーム発見からプレイまでの垣根を劇的に下げ、新たなユーザーエンゲージメントの形を提示しています。

サービスの安定性と品質を支えるインフラ投資も継続しています。新たにアメリカのアッシュバーンとポートランド、イギリスのロンドンのデータセンターが、RTX 5080クラスのサーバーへアップグレードされる予定です。このグローバルなインフラ増強は、世界中のユーザーへより高品質で安定したサービスを提供するというNVIDIAの強い意志の表れと言えるでしょう。

今回の発表は、単なるゲームのニュースにとどまりません。最新半導体の活用、外部プラットフォームとの連携によるエコシステム拡大、そして継続的なインフラ投資という戦略は、他業界のビジネスリーダーやエンジニアにとってもDX推進の重要な示唆に富んでいます。クラウド技術が切り拓く新たなサービスモデルの好例ではないでしょうか。

マイクロソフト、OpenAI向けにNVIDIA最新鋭スパコンを世界初導入

世界初の超巨大AI基盤

NVIDIA最新鋭のGB300 NVL72
OpenAIの最先端AI開発向け
Microsoft Azureが本番稼働
推論性能を最大化する専用設計

圧倒的な技術仕様

4,600基超のBlackwell Ultra GPU
超高速ネットワークInfiniBand
独自設計の液冷・電源システム
将来は数十万基規模へ拡張予定

マイクロソフトは2025年10月9日、NVIDIAの最新AIスーパーコンピューター「GB300 NVL72」を搭載した世界初の大規模クラスターを、パートナーであるOpenAI向けに稼働開始したと発表しました。このシステムは、OpenAI最も要求の厳しいAI推論ワークロード向けに専用設計されており、次世代AI開発の基盤となります。巨大化するAIの計算需要を巡るインフラ競争が、新たな局面に入ったことを示しています。

今回導入された「GB300 NVL72」は、単なるサーバーの集合体ではありません。72基のNVIDIA Blackwell Ultra GPUと36基のGrace CPUを液冷式の単一ラックに統合した、まさに「AI工場」と呼ぶべきシステムです。これにより、巨大なAIモデルの学習と推論で圧倒的な性能を発揮し、特に複雑な推論エージェント型AIの処理能力を飛躍的に向上させます。

このスーパーコンピューターは、4,600基を超えるGPUを一つの巨大な計算資源として束ねています。それを実現するのがNVIDIAの先進的なネットワーク技術です。ラック内は超高速の「NVLink」で、クラスター全体は「Quantum-X800 InfiniBand」で接続。データのボトルネックを解消し、システム全体の性能を最大化する設計が施されています。

この発表のタイミングは注目に値します。パートナーであるOpenAIは近年、独自に1兆ドル規模ともされるデータセンター構築計画を進めています。マイクロソフトは、世界34カ国に300以上のデータセンターを持つ自社のクラウド基盤「Azure」の優位性を改めて誇示し、AIインフラのリーダーとしての地位を確固たるものにする狙いがあると考えられます。

マイクロソフトは、今回の導入を「多くのうちの最初の一つ」と位置づけ、将来的には数十万基のBlackwell Ultra GPUを世界中のデータセンターに展開する計画です。AIモデルが数百兆パラメータへと大規模化する未来を見据え、インフラへの先行投資を加速させています。最先端AIの開発競争は、それを支える計算基盤の競争と一体化しているのです。

インテル、最先端18A技術でAI PC向け新CPU発表

次世代CPU「Panther Lake」

AI PC向けの新プラットフォーム
最先端プロセス18Aを初採用
2025年後半に出荷開始予定
アリゾナ州の新工場で生産

サーバー向けも刷新

サーバー用Xeon 6+もプレビュー
こちらも18Aプロセスを採用
2026年前半に投入見込み

新CEO下の重要戦略

経営再建を進める新体制の成果
半導体製造の米国回帰を象徴

半導体大手のインテルは10月9日、最先端の半導体プロセス「18A」を採用した新プロセッサ「Panther Lake」を発表しました。AI PC向けプラットフォームの次世代製品と位置付け、今年後半に出荷を開始します。これは3月に就任したリップブ・タンCEOが進める経営再建と、半導体製造の国内回帰戦略を象徴する重要な一手となります。

「Panther Lake」は、Intel Core Ultraプロセッサファミリーの次世代を担う製品です。インテルの技術ロードマップにおける大きな前進であり、生産は2025年に本格稼働したアリゾナ州チャンドラーの最新鋭工場「Fab 52」で行われます。同社は、これが米国内で製造される最も先進的なチップであると強調しており、技術的リーダーシップの回復を目指す姿勢を鮮明にしました。

インテルはPC向けだけでなく、データセンター市場に向けた製品も同時に発表しました。コードネーム「Clearwater Forest」として知られるサーバー向けプロセッサ「Xeon 6+」も、同じく18Aプロセスを採用します。こちらの市場投入は2026年前半を予定しており、クラウドコンピューティングやAIインフラ市場での競争力強化を図ります。

今回の発表は、3月に就任したリップブ・タン氏がCEOとして指揮を執ってから半年後の大きな動きです。タン氏は就任以来、中核事業への再集中と「技術主導の企業文化」の回復を公言してきました。この新製品群は、その新経営戦略が具体化した初の成果と言えるでしょう。

インテルの動きは、経済安全保障の観点からも注目されます。同社は半導体製造の国内回帰を強力に推進しており、米国政府との連携を強化。8月には政府がインテル株の10%を取得した経緯もあります。最先端プロセスの国内生産は、サプライチェーンの強靭化に貢献するものと期待されています。

AIブームの死角、銅不足を微生物が救う

AIが招く銅の供給危機

AIデータセンター銅需要を急増
2031年に年間需要は3700万トン
従来技術では採掘困難な鉱石が増加
インフラ整備のボトルネック

微生物による銅回収技術

低品位鉱石から銅を抽出する微生物
省エネかつ環境負荷の低い新手法
機械学習最適な微生物を特定
AIが銅を、銅がAIを支える循環構造

AIの爆発的な普及が、インフラに不可欠な『銅』の深刻な供給不足を招いています。データセンター建設で需要が急増する一方、採掘容易な鉱石は枯渇。この課題に対し、米スタートアップEndolith社は、微生物を利用して低品位鉱石から銅を抽出する革新技術を開発。AIでプロセスを最適化し、AI自身の成長を支える循環を生み出そうとしています。

AIデータセンターはまさに銅の塊です。大規模施設一つで数千トンの銅を消費するとも言われます。この需要急増を受け、世界の年間銅需要は2031年までに約3700万トンに達するとの予測もあります。しかし、埋蔵量の7割以上は従来技術では採掘が難しく、供給のボトルネックが目前に迫っています。

この供給ギャップを埋める鍵として注目されるのが『バイオリーチング』です。Endolith社は、特殊な微生物が銅を溶かす自然プロセスを加速させます。高温での製錬や強力な酸を使う従来法に比べ、エネルギー消費と環境負荷を大幅に削減できるのが利点です。見過ごされてきた低品位鉱石が、新たな資源に変わる可能性を秘めています。

この技術の精度と拡張性を支えているのがAIです。同社は、数千種類もの微生物のゲノムや代謝データを機械学習でモデル化。特定の鉱石や環境条件に対し、最も効果的な微生物の組み合わせを予測し、現場に投入します。これにより、試行錯誤に頼っていた生物学的アプローチを、予測可能でスケーラブルなシステムへと進化させているのです。

『AIが銅回収を効率化し、その銅がAIインフラの成長を支える』という好循環が生まれつつあります。しかし、AI開発の議論は計算能力やエネルギー消費に偏りがちで、銅のような物理的基盤は見過ごされがちです。ソフトウェアの野心に、物理世界の供給が追いついていないのが現実ではないでしょうか。

変圧器の納期遅れでデータセンター計画が停滞するなど、銅不足はすでに現実問題となっています。AI時代の持続的な発展は、優れたアルゴリズムだけでなく、銅という金属によって支えられています。その安定供給に向け、微生物という目に見えない生命体が、次なる飛躍の鍵を握っているのかもしれません。

ソフトバンク、54億ドルでABBロボティクス買収 Physical AIを新フロンティアに

Physical AIへの大型投資

買収額は約54億ドル(53.75億ドル)
買収対象はABBグループのロボティクス事業部門
孫正義CEO「次なるフロンティアはPhysical AI」
2026年中旬から下旬買収完了見込み

成長戦略「ASIと融合」を加速

AIチップ・DC・エネルギーと並ぶ注力分野
産業用ロボット分野での事業拡大を再加速
従業員約7,000人、幅広いロボット製品群を獲得
既存のロボティクス投資群との相乗効果を追求

ソフトバンクグループは10月8日、スイスの巨大企業ABBグループのロボティクス事業部門を約53.75億ドル(約8,000億円超)で買収すると発表しました。これは、孫正義CEOが掲げる次なる成長分野「Physical AI(フィジカルAI)」戦略を具現化する大型投資です。規制当局の承認を経て、2026年中旬から下旬に完了する見込みです。

今回の買収は、ソフトバンクが「情報革命」の次なるフェーズとしてAIに集中投資する姿勢を明確に示しています。孫CEOは、「Physical AI」とは人工超知能(ASI)とロボティクスを融合させることであり、人類の進化を推進する画期的な進化をもたらすと強調しています。過去の失敗例を超え、AIを物理世界に実装する試みを加速させます。

買収対象となるABBのロボティクス事業部門は、約7,000人の従業員を抱え、ピッキングや塗装、清掃など産業用途の幅広いロボット機器を提供しています。2024年の売上は23億ドルでしたが、前年比で減少傾向にありました。ソフトバンクは、この部門の販売を再活性化させ、成長軌道に乗せることを目指しています。

ソフトバンクは現在、ロボティクスを最重要視する四つの戦略分野の一つに位置づけています。残りの三分野は、AIチップ、AIデータセンターエネルギーです。この大型投資は、AIインフラ全体を支配し、ASIを実現するという孫氏の壮大なビジョン達成に向けた、重要な布石となります。

ソフトバンクはすでに、倉庫自動化のAutoStoreやスタートアップのSkild AI、Agile Robotsなど、様々なロボティクス関連企業に投資しています。今回のABB買収により、既存のポートフォリオとの相乗効果が期待されます。特に、高性能な産業用ロボット技術とAI知能を結びつけることで、競争優位性を確立する狙いです。

AIネイティブ6Gが拓く新時代:エッジ推論とインフラ効率化

6G時代の革新的変化

AIトラフィック前提のネットワーク設計
接続性からエッジでのセンシング・推論
自律走行、製造業などAI駆動アプリを支援

AIネイティブ6Gの主要な利点

周波数・エネルギー極度の効率化
通信事業者への新規収益源創出
ソフトウェア定義型でイノベーションを加速
AIによるリアルタイムサイバーセキュリティ
エッジデータセンターでのAIサービス配信

次世代通信規格「6G」は、従来のネットワーク進化と異なり、設計段階からAIトラフィックを前提とし、AIを基盤とする「AI-native」として構築されます。NVIDIAは、米国主導で高性能かつセキュアなAI-native 6Gソリューション開発プロジェクト「AI-WIN」を推進しています。これは単なる通信速度の向上に留まらず、ネットワークのアーキテクチャと機能を根本的に再定義するものです。

6Gの中核は、ネットワークが接続性だけでなく、エッジで情報を「センシング(感知)」し「インファー(推論)」する能力を持つ点です。これにより、ネットワーク自体がAIサービスを供給するインフラとなります。自律走行車や精密農業、先進製造など、AI駆動型のミッションクリティカルな用途を数百億のエンドポイントで支える基盤が確立されます。

AIネイティブな設計は、無線ネットワークの最も重要な資源である周波数帯域の利用を最適化し、極度の効率性を実現します。エネルギー効率も向上し、運用コストを大幅に削減します。さらに、AI無線アクセスネットワーク(AI-RAN)への投資1ドルに対し、通信事業者は約5ドルのAI推論収益を期待できるとの試算もあり、新たな収益機会を生み出します。

従来の通信インフラは単一目的のハードウェア依存型でしたが、6Gはソフトウェア定義型RANアーキテクチャへと移行します。これにより、モバイル無線サービスとAIアプリケーションを共通のインフラスタックで実行可能となり、ハードウェア更新に依存しない迅速なイノベーションサイクルが実現します。この共通化は、通信事業者の設備投資効果を最大化します。

数十億のIoTデバイスが接続される6G時代において、サイバーセキュリティは不可欠です。AIモデルは膨大なデータストリームをリアルタイムで解析し、脅威の検出と自動的な対応を可能にします。国際的な競争が激化する中、米国はAIを組み込んだ強力な6Gネットワークを開発することで、透明性と信頼性に基づいた技術エコシステムの確立を目指しています。

Google、ベルギーに50億ユーロ投資 AIインフラと雇用を強化

巨額投資の内訳

投資額は今後2年間で追加の50億ユーロ
目的はクラウドおよびAIインフラの拡張
サン=ギスランのデータセンターを拡張

経済効果とクリーン電力

フルタイム雇用を300名追加創出
Enecoらと提携陸上風力発電開発
グリッドをクリーンエネルギーで支援

AI人材育成支援

AI駆動型経済に対応する無料スキル開発提供
低スキル労働者向け訓練に非営利団体へ資金供与

Googleは今週、ベルギー国内のクラウドおよびAIインフラストラクチャに対して、今後2年間で追加の50億ユーロ(約8,000億円)投資すると発表しました。これはサン=ギスランのデータセンター拡張や、300名の新規雇用創出を含む大規模な計画です。同社はインフラ強化に加え、クリーンエネルギーの利用拡大と、現地のAI人材育成プログラムを通じて、ベルギーのデジタル経済への貢献を加速させます。

今回の巨額投資は、AI技術の爆発的な進展を支える計算資源の確保が主眼です。ベルギーにあるデータセンターキャンパスを拡張することで、Google Cloudを利用する欧州企業や、次世代AIモデルを運用するための強固な基盤を築きます。この投資は、欧州におけるデジタル化と経済的未来を左右する重要な一歩となります。

インフラ拡張に伴い、現地で300名のフルタイム雇用が新たに創出されます。Googleは、この投資を通じてベルギーに深く根を下ろし、同国が引き続き技術とAI分野におけるリーダーシップを維持できるよう支援するとしています。先端インフラ整備は、競争優位性を高めたい経営者エンジニアにとって重要な要素です。

持続可能性への取り組みも強化されています。GoogleはEnecoやLuminusなどのエネルギー企業と新規契約を結び、新たな陸上風力発電所の開発を支援します。これによりデータセンター電力を賄うだけでなく、電力グリッド全体にクリーンエネルギーを供給し、脱炭素化へ貢献する戦略的な動きです。

さらに、AI駆動型経済で成功するために必要なスキルを、ベルギー国民に無料で提供するプログラムも開始されます。特に低スキル労働者向けに、実用的なAIトレーニングを提供する非営利団体への資金提供も実施します。インフラと人材、両面からデジタル競争力の強化を目指すのが狙いです。

AI21が25万トークン対応の小型LLMを発表、エッジAIの経済性を一変

小型モデルの定義変更

30億パラメータのオープンソースLLM
エッジデバイスで25万トークン超を処理
推論速度は従来比2〜4倍高速化

分散型AIの経済性

MambaとTransformerハイブリッド構造採用
データセンター負荷を減らしコスト構造を改善
高度な推論タスクをデバイスで実行

企業利用の具体例

関数呼び出しやツールルーティングに最適
ローカル処理による高いプライバシー確保

イスラエルのAIスタートアップAI21 Labsは、30億パラメータの小型オープンソースLLM「Jamba Reasoning 3B」を発表しました。このモデルは、ノートPCやスマートフォンなどのエッジデバイス上で、25万トークン以上という異例の長大なコンテキストウィンドウを処理可能であり、AIインフラストラクチャのコスト構造を根本的に変える可能性を秘めています。

Jamba Reasoning 3Bは、従来のTransformerに加え、メモリ効率に優れたMambaアーキテクチャを組み合わせたハイブリッド構造を採用しています。これにより、小型モデルながら高度な推論能力と長文処理を両立。推論速度は従来のモデルに比べて2〜4倍高速であり、MacBook Pro上でのテストでは毎秒35トークンを処理できることが確認されています。

AI21の共同CEOであるオリ・ゴーシェン氏は、データセンターへの過度な依存が経済的な課題となっていると指摘します。Jamba Reasoning 3Bのような小型モデルをデバイス上で動作させることで、高価なGPUクラスターへの負荷を大幅に軽減し、AIインフラストラクチャのコスト削減に貢献し、分散型AIの未来を推進します。

このモデルは、特に企業が関心を持つユースケースに最適化されています。具体的には、関数呼び出し、ポリシーに基づいた生成、そしてツールルーティングなどのタスクで真価を発揮します。シンプルな業務指示や議事録作成などはデバイス上で完結し、プライバシーの確保にも役立ちます。

Jamba Reasoning 3Bは、同規模の他の小型モデルと比較したベンチマークテストでも優位性を示しました。特に長文理解を伴うIFBenchやHumanity’s Last Examといったテストで最高スコアを獲得。これは、同モデルがサイズを犠牲にすることなく、高度な推論能力を維持していることを示しています。

企業は今後、複雑で重い処理はクラウド上のGPUクラスターに任せ、日常的かつシンプルな処理はエッジデバイスでローカルに実行する「ハイブリッド運用」に移行すると見られています。Jamba Reasoning 3Bは、このハイブリッド戦略の中核となる効率的なローカル処理能力を提供します。

MLで5倍強いアルミ合金開発 3Dプリントにより航空機軽量化へ

機械学習が導くレシピ

高性能アルミニウム合金のレシピを特定
機械学習を活用した新材料探索
100万通りから40通りに絞り込み成功

高強度化の鍵となる製法

従来の5倍の強度を実現
3Dプリント(LBPF)を採用
急速冷却による微細な析出物を生成

軽量化とコスト削減効果

ジェットエンジンファンブレードへの応用
チタンより50%軽量かつ低コスト
輸送産業のエネルギー節約に寄与

MITエンジニアチームは、機械学習(ML)を活用し、従来の製法に比べ5倍の強度を持つ3Dプリント可能なアルミニウム合金を開発しました。この新合金は、航空機や高性能自動車部品の軽量化を加速させ、輸送産業における大幅なエネルギー節約に貢献すると期待されています。MLによる効率的な材料設計と積層造形(3Dプリント)技術の組み合わせが、高強度と耐熱性を両立させました。

従来、新しい合金を開発するには、100万通り以上の組成をシミュレーションする必要がありましたが、MLを導入することで、わずか40通りの組成評価で最適な配合を特定できました。複雑な要素が非線形に寄与する材料特性探索において、MLツールは設計空間の探索を劇的に効率化します。この手法は、今後の合金設計プロセス全体を変革する可能性を秘めています。

高強度を実現した鍵は、製造プロセスにあります。従来の鋳造では冷却に時間がかかり、合金の強度を左右する微細な析出物が大きく成長してしまいます。対照的に、チームが採用したレーザー粉末床溶融結合(LBPF)などの3Dプリント技術は、急速な冷却と凝固を可能にし、予測通りの高強度を持つ微細な析出物を安定的に生成しました。

新合金は、現行の最強の鋳造アルミニウム合金に匹敵する強度を持ち、さらにアルミニウム合金としては非常に高い400度Cまでの高温安定性を誇ります。これにより、ジェットエンジンのファンブレードなど、これまでチタンや複合材が使われていた部品への適用が可能になります。チタンより50%以上軽量かつ最大10分の1のコストで済むため、部品製造の収益性を高めます。

この3Dプリント可能な新合金は、複雑な形状の製造に適しており、航空機部品のほかにも、高性能自動車データセンターの冷却装置など、幅広い分野での利用が見込まれています。材料設計と積層造形の特性を組み合わせたこの新たな設計手法は、様々な産業における軽量化ニーズに対応し、革新的な製品開発の扉を開きます。

ChatGPT、週間8億ユーザーを達成 AIインフラへの巨額投資を加速

驚異的なユーザー成長

週間アクティブユーザー数:8億人
OpenAI活用開発者数:400万人
APIトークン処理量:毎分60億トークン
史上最速級のオンラインサービス成長

市場評価と事業拡大

企業価値:5000億ドル(世界最高未公開企業)
大規模AIインフラStargate」の建設推進
Stripeと連携しエージェントコマースへ参入
インタラクティブな新世代アプリの実現を予告

OpenAIサム・アルトマンCEOは、ChatGPTの週間アクティブユーザー数(WAU)が8億人に到達したと発表しました。これは、コンシューマー層に加え、開発者、企業、政府における採用が爆発的に拡大していることを示します。アルトマン氏は、AIが「遊ぶもの」から「毎日構築するもの」へと役割を変えたと強調しています。

ユーザー数の増加ペースは驚異的です。今年の3月末に5億人だったWAUは、8月に7億人を超え、わずか数ヶ月で8億人に達しました。さらに、OpenAIを活用して構築を行う開発者は400万人に及び、APIを通じて毎分60億トークン以上が処理されており、AIエコシステムの核として支配的な地位を確立しています。

この急成長の背景にあるのは、AIインフラへの巨額投資です。OpenAIは、大量のAIチップの確保競争を繰り広げるとともに、Oracleソフトバンクとの提携により、次世代データセンター群「Stargate」など大規模AIインフラの構築を急いでいます。これは今後のさらなるサービス拡大と技術革新の基盤となります。

市場からの評価も高まり続けています。非公開株の売却取引により、OpenAIの企業価値は5000億ドル(約75兆円)に達し、世界で最も価値の高い未公開企業となりました。動画生成ツールSoraの新バージョンなど、新製品も矢継ぎ早に展開する勢いを見せています。

Dev Dayでは、ChatGPT内でアプリを構築するための新ツールが発表され、インタラクティブで適応型、パーソナライズされた「新しい世代のアプリ」の実現が予告されました。同社はStripeと連携し、エージェントベースのコマースプラットフォームへ参入するなど、ビジネス領域での活用も深化させています。

一方で、急速な普及に伴う課題も指摘されています。特に、AIがユーザーの意見に過度に追従する「追従性(sycophancy)」や、ユーザーを誤った結論に導くAI誘発性の妄想(delusion)といった倫理的・技術的な問題について、専門家からの懸念が続いています。企業はこれらの課題に対する対応も求められます。

AMDとOpenAI、6GW超大型提携でAI半導体市場の勢力図を変える

提携の規模と内容

6GW(ギガワット)分のInstinct GPUを複数世代にわたり導入
2026年後半からInstinct MI450シリーズを1GW展開開始
AMDは「数百億ドル」規模の収益を想定

戦略的な資本連携

OpenAI最大1億6000万株のAMD株ワラント付与
ワラント行使は導入規模と株価目標達成に連動
OpenAIにAMDの約10%の株式取得オプション

AIインフラ戦略

Nvidia支配に対抗するAMDの市場攻略
OpenAIはAIチップ調達先を多角化
AI需要は天井知らず、コンピューティング能力確保が最優先

半導体大手AMDとAI開発のOpenAIは10月6日、複数世代にわたるInstinct GPUを供給する総量6ギガワット(GW)に及ぶ超大型戦略的パートナーシップを発表しました。この提携は、AIインフラの構築を急ぐOpenAIの需要に応えるとともに、Nvidiaが圧倒的なシェアを持つAIチップ市場において、AMDが強力な地位を確立する大きな一歩となります。

契約の経済規模は極めて大きく、AMDは今後数年間で「数百億ドル」規模の収益を見込んでいます。最初の展開として、2026年後半に次世代GPUであるInstinct MI450シリーズの1GW導入が開始されます。両社はハードウェアとソフトウェア開発で技術的知見を共有し、AIチップの最適化を加速させる方針です。

提携の特筆すべき点は、戦略的利益を一致させるための資本連携です。AMDはOpenAIに対し、特定の導入マイルストーンやAMDの株価目標達成に応じて、最大1億6000万株(発行済み株式の約10%相当)の普通株を取得できるワラントを発行しました。

OpenAIは、サム・アルトマンCEOがAIの可能性を最大限に引き出すためには「はるかに多くのコンピューティング能力が必要」と語る通り、大規模なAIインフラの確保を最優先課題としています。同社は先月、Nvidiaとも10GW超のAIデータセンターに関する提携を結んでおり、特定のサプライヤーに依存しない多角化戦略を明確に示しています。

OpenAIはAMDを「中核となる戦略的コンピューティングパートナー」と位置づけ、MI450シリーズ以降の将来世代の技術開発にも深く関与します。これにより、AMDはOpenAIという最先端のユーザーから直接フィードバックを得て、製品ロードマップを最適化できるという相互利益が生まれます。

AIインフラに対する世界的な需要が天井知らずで拡大する中、この巨額なチップ供給契約は、データセンターの「ゴールドラッシュ」を象徴しています。両社は世界で最も野心的なAIインフラ構築を可能にし、AIエコシステム全体の進歩を牽引していく構えです。

アルトマン氏、GPT-5批判に反論「AGIへの道は順調」

「GPT-5」への逆風

期待外れとの厳しい評価
AIブーム終焉論の台頭
スケーリング則の限界指摘

OpenAIの反論

専門分野での画期的な進歩
進歩の本質は強化学習
GPT-6以降で更なる飛躍を約束
AGIは目的地でなくプロセス

OpenAIサム・アルトマンCEOが、8月に発表された「GPT-5」への厳しい批判に反論しました。同氏はWIRED誌のインタビューで、初期の評判は芳しくなかったと認めつつも、GPT-5AGI(汎用人工知知能)への探求において重要な一歩であり、その進歩は計画通りであると強調。AIブームの終焉を囁く声に真っ向から異を唱えました。

GPT-5の発表は、多くの専門家や利用者から「期待外れ」と評されました。デモでの不具合や、前モデルからの飛躍が感じられないという声が相次ぎ、「AIブームは終わった」「スケーリング則は限界に達した」との懐疑論が噴出する事態となったのです。

これに対しアルトマン氏は、GPT-5の真価は科学やコーディングといった専門分野で発揮されると主張します。「物理学の重要な問題を解いた」「生物学者の発見を助けた」など、AIが科学的発見を加速させ始めた初のモデルだとし、その重要性を訴えています。

では、なぜ評価が分かれたのでしょうか。OpenAI側は、GPT-4から5への進化の間に頻繁なアップデートがあったため、ジャンプが小さく見えたと分析。また、今回の進歩の核は巨大なデータセットではなく、専門家による強化学習にあったと説明しています。

アルトマン氏は、スケーリング仮説が終わったとの見方を強く否定。同社は数十億ドル規模のデータセンター建設を進めており、計算能力の増強が次なる飛躍に不可欠だと断言します。「GPT-6は5より、GPT-7は6より格段に良くなる」と自信を見せています。

興味深いのは、AGIの定義に関する変化です。OpenAIAGIを「特定の到達点」ではなく、「経済や社会を変革し続ける終わりのないプロセス」と捉え直しています。GPT-5はその過程における、科学的進歩の可能性を示す「かすかな光」だと位置づけているのです。

AWS、Bedrock AgentCoreの通信をVPC内で完結

セキュリティ強化の要点

VPCエンドポイントでプライベート接続
インターネットを介さない安全な通信
機密データを扱うAIエージェントに最適
AWS PrivateLink技術を活用

導入のメリット

通信遅延の削減とパフォーマンス向上
エンドポイントポリシーで厳格なアクセス制御
企業のコンプライアンス要件に対応
オンプレミスからのハイブリッド接続も可能

アマゾンウェブサービス(AWS)が、生成AIサービス「Amazon Bedrock」のAgentCore Gatewayへのセキュアな接続方法として、VPCインターフェイスエンドポイントを利用する手法を公開しました。これにより、企業はAIエージェントが扱う機密データの通信をインターネットから隔離し、セキュリティコンプライアンスを大幅に強化できます。

企業の自動化を推進するAIエージェントは、機密データや基幹システムにアクセスするため、本番環境での利用には通信経路のセキュリティ確保が不可欠です。パブリックインターネットを経由する通信は、潜在的なリスクを伴い、多くの企業のセキュリティポリシーや規制要件を満たすことが困難でした。

今回公開された手法では、「AWS PrivateLink」技術を活用したVPCインターフェイスエンドポイントを利用します。これにより、VPC(仮想プライベートクラウド)内で稼働するAIエージェントからAgentCore Gatewayへの通信が、AWSのプライベートネットワーク内で完結します。外部のインターネットを経由しないため、極めて安全な通信経路を確立できます。

プライベート接続の利点はセキュリティ強化に留まりません。AWSネットワーク内での直接接続により、通信の遅延が削減され、パフォーマンスが向上します。また、エンドポイントポリシーを設定することで、特定のゲートウェイへのアクセスのみを許可するなど、最小権限の原則に基づいた厳格なアクセス制御も可能です。

このVPCエンドポイントは、AIエージェントがツールを利用する際の「データプレーン」通信にのみ適用される点に注意が必要です。ゲートウェイの作成や管理といった「コントロールプレーン」操作は、引き続き従来のパブリックエンドポイントを経由して行う必要があります。この違いを理解しておくことが重要です。

このアーキテクチャは、オンプレミスのデータセンターからAIエージェントに安全にアクセスするハイブリッドクラウド構成や、複数のVPCをまたいだ大規模なシステムにも応用できます。企業は、自社の環境に合わせて柔軟かつスケーラブルなAI基盤を構築することが可能になります。

OpenAI、韓国勢と提携 スターゲイト計画が加速

巨大AIインフラ計画

OpenAI主導のスターゲイト計画
総額5000億ドル規模の投資

韓国2社との提携内容

サムスン・SKが先端メモリチップ供給
月産90万枚のDRAMウェハー目標

提携の狙いと影響

AI開発に不可欠な計算能力の確保
韓国世界AI国家トップ3構想を支援

AI開発をリードするOpenAIは10月1日、韓国半導体大手サムスン電子およびSKハイニックスとの戦略的提携を発表しました。この提携は、OpenAIが主導する巨大AIインフラプロジェクトスターゲイト向けに、先端メモリチップの安定供給と韓国国内でのデータセンター建設を目的としています。AIモデルの性能競争が激化する中、計算基盤の確保を急ぐ動きが加速しています。

提携の核心は、AIモデルの学習と推論に不可欠な先端メモリチップの確保です。サムスン電子とSKハイニックスは、OpenAIの需要に応えるため、広帯域メモリ(DRAM)の生産規模を月産90万枚のウェハーまで拡大する計画です。これは、現在の業界全体の生産能力の2倍以上に相当する野心的な目標であり、AI半導体市場の勢力図を大きく変える可能性があります。

半導体供給に加え、両社は韓国国内での次世代AIデータセンター建設でも協力します。OpenAI韓国科学技術情報通信部とも覚書を交わし、ソウル首都圏以外の地域での建設機会も模索しています。これにより、地域経済の均衡ある発展と新たな雇用創出にも貢献する狙いです。サムスンはコスト削減や環境負荷低減が期待できる海上データセンターの可能性も探ります。

今回の提携は、OpenAIオラクルソフトバンクと共に進める総額5000億ドル規模の巨大プロジェクト『スターゲイト』の一環です。このプロジェクトは、AI開発専用のデータセンターを世界中に構築し、次世代AIモデルが必要とする膨大な計算能力を確保することを目的としています。韓国勢の参加により、プロジェクトは大きく前進することになります。

OpenAIインフラ投資を急ぐ背景には、AIの性能が計算能力の規模に大きく依存するという現実があります。より高度なAIモデルを開発・運用するには、桁違いの計算リソースが不可欠です。NVIDIAからの巨額投資受け入れに続く今回の提携は、AI覇権を握るため、計算基盤固めを最優先するOpenAIの強い意志の表れです。

この提携は、韓国にとっても大きな意味を持ちます。サム・アルトマンCEOは「韓国はAIの世界的リーダーになるための全ての要素を備えている」と期待を寄せます。韓国政府が掲げる『世界AI国家トップ3』構想の実現を後押しすると共に、サムスンとSKは世界のAIインフラを支える中核的プレーヤーとしての地位を確固たるものにする狙いです。

MS、商用事業に新CEO。ナデラ氏はAI開発に集中へ

AI時代に向けた組織再編

アルソフ氏が商用事業CEOに就任
グローバルセールス組織を9年間主導した実績
販売・マーケ・業務部門を統括し顧客対応を強化
顧客ニーズと開発のフィードバックループを短縮

ナデラCEOの役割

CEOは技術革新に専念
データセンターやAI科学、製品革新を主導
AIという世代的シフトへの迅速な対応
主要事業トップにCEO職を設け権限を委譲

マイクロソフトは2025年10月1日、商用事業の最高経営責任者(CEO)にジャドソン・アルソフ氏を任命したと発表しました。この人事は、同社が直面する「地殻変動的なAIプラットフォームシフト」に対応するための組織再編の一環です。サティア・ナデラCEOは留任し、今後はAI開発などより技術的な業務に集中するとしています。

新たにCEOに就任するアルソフ氏は、これまで最高商務責任者として9年間にわたり同社のグローバルセールス組織を率いてきた実力者です。今後は販売部門に加え、マーケティング部門とオペレーション部門も統括し、顧客との接点を一元化することで、ソフトウェアやサービスの提供体制を強化します。

ナデラCEOは社内メモで、「顧客ニーズと、我々が製品をどう提供・サポートするかの間のフィードバックループを緊密にする」と説明。販売、マーケティング、オペレーションを統合することで、AIを活用した変革を求める顧客への提案力と実行力を高めることが今回の再編の狙いです。

この組織変更により、ナデラ氏はマイクロソフトの根幹をなす技術開発に専念できる環境が整います。具体的には、データセンターの構築、システムアーキテクチャ、AI科学、そして製品イノベーションといった、最も野心的な技術的業務に集中するとしています。

マイクロソフトは近年、ゲーム部門やAI部門のトップにCEOの肩書を与えるなど、権限委譲を進めてきました。今回の人事もその流れを汲むもので、ナデラ氏の退任を示唆するものではありません。むしろ、会社全体でAIという世代的な変化に対応するための「再発明」と位置づけられています。

生成AIの電力消費、2030年に23倍増予測

急増するAIの電力消費

簡単なAIへの質問にも電力
ChatGPTは年間米2.9万世帯分を消費
生成AI全体では更に巨大化

2030年の驚異的な未来

総消費電力23倍超に急増
全人類が1日38クエリを利用
超巨大データセンターが数十棟必要

需要を牽引するAIの進化

主因は学習より推論(利用)
自律型AIエージェントの普及

生成AIの急速な普及に伴い、その膨大なエネルギー消費が新たな課題として浮上しています。ChatGPTのようなサービスは既に米国数万世帯分に相当する電力を消費しており、2030年までには生成AI全体の電力需要が現在の23倍以上に達するとの予測も出ています。この需要増に対応するため、OpenAIなどが参画するプロジェクトでは、前例のない規模のデータセンター建設が計画されています。AIの進化がもたらすエネルギー問題の現状と未来を解説します。

OpenAIChatGPTは、1日あたり25億件以上のクエリを処理しています。1クエリあたり0.34ワット時(Wh)と仮定すると、1日で850メガワット時(MWh)を消費する計算です。これは年間で米国の家庭約29,000世帯分の電力に匹敵する規模であり、簡単な対話の裏に隠された膨大なエネルギーコストを示唆しています。

ChatGPTは生成AI市場のほんの一角に過ぎません。Schneider Electric社の調査レポートによれば、2025年時点で生成AI全体が消費する電力は15テラワット時(TWh)に達すると推定されています。これはGoogleGeminiAnthropicClaudeなど、競合サービスの成長も織り込んだ数値であり、AI産業全体のインフラ負荷の大きさを示しています。

課題は将来の爆発的な需要増です。同レポートは、2030年までに生成AIの総電力消費量が347TWhに達すると予測しています。これは2025年比で23倍以上という驚異的な伸びです。背景には、人間だけでなくAIエージェント同士が自律的に対話し、1日あたり3,290億件ものクエリを生成する未来が想定されています。

このエネルギー需要を満たすため、IT大手はインフラの超巨大化を急いでいます。OpenAIなどが参画する「スターゲイト・プロジェクト」では、従来のデータセンターの常識を覆す1ギガワット級の施設の建設が計画されています。2030年までの需要増を賄うには、このような超巨大データセンターが数十棟必要になると試算されています。

AIの電力消費の構造も変化します。これまではモデルを開発する「学習」段階の負荷が注目されてきましたが、今後はユーザーとの対話など「推論(利用)」段階での消費が需要増の主要な牽引役となります。AIが社会に浸透すればするほど、日常的な利用に伴うエネルギー消費が加速度的に増大していくのです。

生成AIの活用は生産性向上の鍵ですが、その裏には無視できないエネルギーコストとインフラへの負荷が存在します。AIの市場価値を追求する上で、エネルギー効率の高いモデルの選択や開発、そして持続可能なインフラ戦略が、企業の競争力を左右する重要な要素となるでしょう。

AIの電力危機、MITが示す技術的解決策

急増するAIの環境負荷

日本の総消費電力を上回る規模
需要増の60%を化石燃料に依存

ハード・ソフト両面の対策

GPU出力を抑える省エネ運用
アルゴリズム改善で計算量を削減
再生可能エネルギー利用の最適化

AIで気候変動を解決

AIによる再エネ導入の加速
プロジェクトの気候影響スコア化

マサチューセッツ工科大学(MIT)の研究者らが、急速に拡大する生成AIの環境負荷に対する具体的な解決策を提示しています。国際エネルギー機関(IEA)によると、データセンター電力需要は2030年までに倍増し、日本の総消費電力を上回る見込みです。この課題に対し、研究者らはハードウェアの効率運用、アルゴリズムの改善、AI自身を活用した気候変動対策など、多角的なアプローチを提唱しています。

AIの電力消費は、もはや看過できないレベルに達しつつあります。ゴールドマン・サックスの分析によれば、データセンター電力需要増の約60%が化石燃料で賄われ、世界の炭素排出量を約2.2億トン増加させると予測されています。これは、運用時の電力だけでなく、データセンター建設時に排出される「体現炭素」も考慮に入れる必要がある、と専門家は警鐘を鳴らします。

対策の第一歩は、ハードウェアの運用効率化です。MITの研究では、データセンターGPU画像処理半導体)の出力を通常の3割程度に抑えても、AIモデルの性能への影響は最小限であることが示されました。これにより消費電力を大幅に削減できます。また、モデルの学習精度が一定水準に達した時点で処理を停止するなど、運用の工夫が排出量削減に直結します。

ハードウェア以上に大きな効果が期待されるのが、アルゴリズムの改善です。MITのニール・トンプソン氏は、アルゴリズムの効率改善により、同じタスクをより少ない計算量で実行できる「Negaflop(ネガフロップ)」という概念を提唱。モデル構造の最適化により、計算効率は8~9ヶ月で倍増しており、これが最も重要な環境負荷削減策だと指摘しています。

エネルギー利用の最適化も鍵となります。太陽光や風力など、再生可能エネルギーの供給量が多い時間帯に計算処理を分散させることで、データセンターのカーボンフットプリントを削減できます。また、AIワークロードを柔軟に調整する「スマートデータセンター」構想や、余剰電力を蓄える長時間エネルギー貯蔵ユニットの活用も有効な戦略です。

興味深いことに、AI自身がこの問題の解決策となり得ます。例えば、AIを用いて再生可能エネルギー発電所の送電網への接続プロセスを高速化したり、太陽光・風力発電量を高精度に予測したりすることが可能です。AIは複雑なシステムの最適化を得意としており、クリーンエネルギー技術の開発・導入を加速させる強力なツールとなるでしょう。

生成AIの持続可能な発展のためには、こうした技術的対策に加え、企業、規制当局、研究機関が連携し、包括的に取り組むことが不可欠です。MITの研究者らは、AIプロジェクトの気候への影響を総合的に評価するフレームワークも開発しており、産官学の協力を通じて、技術革新と環境保全の両立を目指す必要があると結論付けています。

AIチップCerebras、IPO計画遅延も11億ドル調達

大型資金調達の概要

Nvidiaのライバルが11億ドルを調達
企業評価額81億ドルに到達
Fidelityなどがラウンドを主導
累計調達額は約20億ドル

成長戦略とIPOの行方

AI推論サービスの需要が急拡大
資金使途はデータセンター拡張
米国製造拠点の強化も推進
規制審査でIPOは遅延、時期未定

NVIDIAの競合である米Cerebras Systemsは9月30日、11億ドルの資金調達を発表しました。IPO計画が遅延する中、急拡大するAI推論サービスの需要に対応するため、データセンター拡張などに資金を充当します。

今回のラウンドはFidelityなどが主導し、企業評価額81億ドルと評価されました。2021年の前回ラウンドから倍増です。2015年設立の同社は、累計調達額が約20億ドルに達し、AIハードウェア市場での存在感を一層高めています。

資金調達の背景は「推論」市場の爆発的成長です。2024年に開始したAI推論クラウドは需要が殺到。アンドリュー・フェルドマンCEOは「AIが実用的になる転換点を越え、推論需要が爆発すると確信した」と語り、事業拡大を急ぎます。

調達資金の主な使途はインフラ増強です。2025年だけで米国内に5つの新データセンターを開設。今後はカナダや欧州にも拠点を広げる計画です。米国内の製造ハブ強化と合わせ、急増する需要に対応する供給体制を構築します。

一方で、同社のIPO計画は足踏み状態が続いています。1年前にIPOを申請したものの、アブダビのAI企業G42からの投資米国外国投資委員会(CFIUS)の審査対象となり、手続きが遅延。フェルドマンCEOは「我々の目標は公開企業になることだ」と述べ、IPOへの意欲は変わらないことを強調しています。

今回の大型調達は、公開市場の投資家が主導する「プレIPOラウンド」の性格を帯びており、市場環境を見極めながら最適なタイミングで上場を目指す戦略とみられます。AIインフラ競争が激化する中、Cerebrasの今後の動向が注目されます。

韓国、国策AIで世界に挑む 官民で打倒OpenAI

国策AIプロジェクト始動

政府が5300億ウォン投資
国内大手・新興5社を選抜
半年毎の評価で2社に絞込
海外技術への依存脱却が狙い

各社の独自戦略

LG: 高品質な産業データ活用
SKT: 通信インフラと連携
Naver: 自社サービスにAIを統合
Upstage: 専門分野特化で差別化

韓国政府が、米国OpenAIGoogleなどに対抗するため、自国製AI開発に本格的に乗り出しました。科学技術情報通信省は先月、国内企業5社に総額5300億ウォン(約580億円)を投じる国家AIプロジェクトを発表。外国技術への依存を減らし、データ主権と国家安全保障を確保するのが狙いです。官民一体で独自のAIエコシステム構築を目指します。

プロジェクトに選ばれたのは、LG AI Research、SK Telecom、Naver Cloud、NC AI、そしてスタートアップのUpstageの5社です。政府は半年ごとに各社の進捗を評価し、成果の低い企業を脱落させる一方、有望な企業への支援を継続します。最終的には2社に絞り込み、国家を代表するAI開発を牽引させるという厳しい競争原理を導入しました。

中でも注目されるのが、韓国最大のインターネット企業Naverです。同社は自社開発のLLM「HyperCLOVA X」を、検索、ショッピング、地図といった国民的サービスに統合しています。モデル開発からデータセンタークラウド、アプリまで一気通貫で手がける「AIフルスタック」を強みに、生活への浸透を図ります。

財閥系も独自の強みで対抗します。LG AI Researchは、製造業やバイオといったBtoB領域の高品質な専門データを活用し、汎用モデルとの差別化を狙います。通信最大手のSK Telecomは、膨大な顧客基盤と通信インフラを活かし、個人向けAIエージェント「A.」の普及を加速させています。

唯一のスタートアップとして選ばれたUpstageは、コスト効率と特定分野への特化で勝負します。同社の「Solar Pro 2」は、パラメータ数を抑えつつも韓国語性能でグローバルモデルを凌駕。金融や法律といった専門分野に特化したモデルを開発し、ビジネスでの実用性を追求しています。

韓国企業の共通点は、巨大資本を持つ米国勢との単純な規模の競争を避け、韓国語と文化への深い理解、そして質の高いデータを武器にしている点です。この官民一体の「選択と集中」戦略が、世界のAI覇権争いに一石を投じることができるか。その動向が注目されます。

OpenAI拡張へ、AIデータセンターに巨額投資

AI覇権狙う巨額投資

NvidiaOpenAI最大1000億ドル投資
新AIデータセンター5拠点の建設計画
Oracle資金調達180億ドルの社債発行

次世代AI開発の布石

将来版ChatGPT計算能力を確保
新機能提供のリソース制約が背景
AIサービスの安定供給事業拡大が狙い

NvidiaOracleSoftbankなどのシリコンバレー大手企業が、OpenAIのAI開発能力を強化するため、AIデータセンターに数千億ドル規模の巨額投資を行っていることが明らかになりました。この動きは、将来版ChatGPTなど、より高度なAIモデルのトレーニングとサービス提供に必要な計算能力を確保するもので、AIインフラを巡る覇権争いが激化していることを示しています。

中でも注目されるのが、半導体大手Nvidiaによる投資です。同社はOpenAIに対し、最大で1000億ドル(約15兆円)を投じる計画を発表しました。これはAIの計算処理に不可欠なGPUを供給するだけでなく、OpenAIとの関係を強化し、AIエコシステムの中心に位置し続けるための戦略的な一手と見られます。

一方、OpenAI自身もインフラ増強を加速させています。同社はOracleおよびSoftbank提携し、「Stargateスターゲイト」と名付けられたAIスーパーコンピューターを含む、5つの新しいデータセンターを建設する計画です。これにより、今後数年間でギガワット級の新たな計算能力が確保される見込みです。

この巨大プロジェクトを資金面で支えるのがOracleです。同社はデータセンター建設費用を賄うため、180億ドル(約2.7兆円)という異例の規模の社債を発行しました。クラウド事業で後れを取っていたOracleにとって、OpenAIとの提携はAIインフラ市場での存在感を一気に高める好機となっています。

なぜこれほど大規模な投資が必要なのでしょうか。その背景には、OpenAIが直面する計算能力の制約があります。同社が最近発表した新機能「Pulse」は、ユーザーに合わせた朝のブリーフィングを自動生成しますが、膨大な計算量を要するため、現在は月額200ドルの最上位プラン加入者のみに提供が限定されています。

今回の一連の投資は、単なる設備増強にとどまりません。AIが社会インフラとなる未来を見据え、その基盤を誰が握るのかという、IT大手による壮大な主導権争いの表れと言えるでしょう。これらの投資が、どのような革新的なAIサービスを生み出すのか、世界が注目しています。

ベトナム、NVIDIAと連携し「国家AI」戦略を加速

NVIDIAは9月23日、ベトナムのホーチミン市で「AI Day」を開催しました。イベントには800人以上が参加し、ベトナム政府は「国家AI(Sovereign AI)」を経済戦略の中心に据え、国を挙げて推進する姿勢を強調しました。NVIDIAはAIエコシステムの構築や地域に特化したデータ・モデルの重要性を指摘。ベトナムは2030年までに東南アジアのAI先進国トップ4入りを目指します。 「国家AI」を成功させる鍵は何でしょうか。NVIDIA幹部は5つの重要要素を挙げました。具体的には、①AIの必要性に対する国家的な認識、②開発者や企業から成るエコシステム、③AI人材の育成、④言語や文化に合わせたAIモデルとデータ、⑤国内で管理・運営される「AIファクトリー」です。これらが成功の基盤となります。 ベトナムは野心的な目標を掲げています。2030年までに東南アジアにおけるAI先進国トップ4に入り、3つの国家データセンターを建設する計画です。FPTソフトウェアのCEOは「技術における主権は、国家安全保障や国民のプライバシー保護にも繋がる」と述べ、国家AIの重要性を強調しました。 ベトナムのAIエコシステムは着実に成長しています。国内には100社以上のAI関連スタートアップが存在し、約10万人のAI人材が活躍しています。NVIDIAのジェンスン・フアンCEOも、ベトナムの若者の数学や科学技術分野での優秀さを高く評価しており、将来の技術開発における強固な基盤になると期待を寄せています。 現地のパートナー企業も具体的な動きを見せています。IT大手FPTは、NVIDIAGPUを活用した国内AIファクトリーの構築を進めています。また、GreenNodeやZaloといった企業は、ベトナム特有の言語や文化に合わせた大規模言語モデル(LLM)の開発に取り組んでおり、国産AI技術の確立を目指しています。

Microsoft、AIチップ冷却新技術で性能向上と省エネ両立へ

Microsoftは2025年9月25日、AIチップの性能向上とデータセンターの省エネ化を両立する新冷却技術「マイクロフルイディクス」の研究成果を発表しました。この技術は、チップの裏面に直接微細な溝を彫り、冷却液を流すことで発熱を効率的に抑えます。実験では従来の冷却方式より最大3倍高い熱除去性能を示しており、次世代AIチップの開発や持続可能性向上に繋がると期待されています。 新技術の核心は、チップの裏面に髪の毛ほどの幅の溝を直接形成し、そこに冷却液を循環させる点にあります。同社はAIを活用して最も効率的な冷却経路を設計しました。熱源である半導体に冷却液が直接触れるため、熱を素早く奪うことが可能です。これにより、GPUの最大温度上昇を65%削減できたと報告しています。なぜこれほど効率的なのでしょうか。 従来の主流であるコールドプレート方式では、チップと冷却液の間に熱伝導を妨げる層が存在しました。マイクロフルイディクスではこの中間層をなくすことで、熱伝達の効率を飛躍的に高めました。その結果、冷却液を過度に冷やす必要がなくなり、冷却システム全体の消費電力削減に貢献します。これはデータセンターの運用コストに直結する利点です。 この高い冷却性能は、チップの処理能力を意図的に高める「オーバークロック」をより安全に行うことを可能にします。これにより、サーバーはピーク時の需要にも柔軟に対応でき、結果的にデータセンター全体のサーバー台数を削減できる可能性があります。設備投資の抑制や省スペース化にも繋がるでしょう。 さらに、この技術はこれまで発熱が大きな障壁となっていた3Dチップアーキテクチャの実現にも道を開きます。半導体を立体的に積層できれば、処理能力は飛躍的に向上します。マイクロフルイディクスは、ムーアの法則の先を行く次世代AIチップ開発を加速させる鍵となるかもしれません。 ただし、この技術はまだ研究開発段階であり、製造プロセスへの統合やサプライチェーンの構築といった実用化への課題は残っています。Microsoftは具体的な導入時期を示していませんが、業界全体の持続可能な発展に貢献する技術として、今後の動向が注目されます。

DatabricksとOpenAI提携、企業AI導入を1億ドルで加速

データ分析基盤のDatabricksは25日、AI開発のOpenAIと複数年にわたる1億ドル規模の契約を結んだと発表しました。この提携で、DatabricksのプラットフォームにOpenAIの最新AIモデル「GPT-5」などが統合されます。企業が自社データを安全に活用しAIアプリを構築できるようにし、エンタープライズ市場での生成AI導入を加速させる狙いです。 今回の統合で、顧客はDatabricksのAI製品「Agent Bricks」上で自社データに基づくAIアプリやエージェントを構築できます。OpenAIの最新モデルが選択肢に加わり、SQLやAPI経由でアクセス可能です。「GPT-5」は旗艦モデルとして提供される予定で、企業のAI開発の選択肢が大きく広がります。 提携の背景には、生成AIを企業システムに組み込む競争の激化があります。企業は自社の機密データを安全に活用できるAIツールを求めており、今回の提携はこの需要に応えるものです。OpenAIのCOOは「企業の安全なデータがある場所で、我々の最先端モデルを提供する」と述べ、企業のAI活用を支援する姿勢を示しました。 今回の契約でDatabricksはOpenAIに最低1億ドルの支払いを保証します。これは関連収益が目標に達しなくても支払うもので、企業顧客のOpenAIモデルへの移行に賭ける戦略です。一方、急速なデータセンター増設を進めるOpenAIにとっては、安定した収入源の確保に繋がります。 Databricksは今年初めにAnthropicとも同様の契約を結んでおり、マルチAIモデル戦略を鮮明にしています。既にMastercardなどの顧客からOpenAIモデルへの強い需要があるとしており、今回の提携が企業のAI活用をさらに後押しすることが期待されます。

Clarifai、AI推論エンジンで処理速度2倍・コスト4割減

AIプラットフォームのClarifaiは25日、AIモデルの実行速度を2倍にし、コストを40%削減する新しい推論エンジンを発表しました。既存ハードウェアの性能を最大限引き出す多様な最適化技術を搭載し、複雑なAIの計算負荷増大に対応します。 新エンジンの性能は第三者機関によるベンチマークテストで検証済みです。スループット(処理能力)とレイテンシー(遅延)の両方で業界最高水準を記録。これにより、同じハードウェアでより多くの処理を高速に実行できることが客観的に示されました。 高速化は、学習済みAIモデルを運用する「推論」処理に特化した最適化で実現されます。同社CEOによると、CUDAカーネルレベルの最適化から高度な投機的デコーディング技術まで、様々なソフトウェア技術を組み合わせているとのことです。 開発の背景には、単一の指示で複数ステップの思考を要するエージェント型AIの台頭があります。こうしたモデルは計算負荷が極めて高く、推論コストの増大が課題でした。新エンジンは特にこうした多段階処理を行うモデル向けに調整されています。 AIブームによるGPU需要の急増を受け、同社はAIの計算オーケストレーション(最適管理)に注力しています。CEOは「巨大データセンター需要に対し、アルゴリズム革新はまだ終わっていない」と述べ、ハードウェア増強だけでなくソフトウェアによる最適化の重要性を強調しました。

OpenAI巨額契約の資金源、循環投資モデルに専門家が警鐘

クラウド大手のオラクルが、150億ドル(約2.1兆円)規模の社債発行を計画していることが報じられました。これはAI開発をリードするOpenAIとの年間300億ドル規模の歴史的なインフラ契約などに対応する動きです。一連の巨額取引は、投資資金が還流する「循環投資」の様相を呈しており、その実効性やリスクについて専門家から疑問の声が上がっています。 なぜこれほど巨額の資金が必要なのでしょうか。オラクルOpenAIに対し、次世代AIモデルの訓練と運用に必要な計算資源を供給します。さらに、メタとも200億ドル規模の同様の契約について交渉中と報じられており、AIインフラの需要は爆発的に拡大しています。今回の資金調達は、こうした巨大な需要に応えるための設備投資を賄うことが目的です。 この取引はオラクルだけではありません。半導体大手NVIDIAも、OpenAIに最大1000億ドルを投資すると発表しました。注目すべきは、OpenAIがその資金を使ってNVIDIAのシステムを導入する点です。つまり、NVIDIAが投じた資金が、巡り巡って自社の売上として戻ってくるという構造になっています。 このような「循環投資」モデルは、業界関係者の間で議論を呼んでいます。インフラ提供者がAI企業に投資し、そのAI企業が最大の顧客になるという構図です。これは真の経済的投資なのでしょうか、それとも巧妙な会計操作なのでしょうか。その実態について、多くの専門家が疑問の目を向けています。 取引の仕組みはさらに複雑化する可能性があります。NVIDIAは自社製チップOpenAIに直接販売するのではなく、別会社を設立して購入させ、そこからリースする新事業モデルを検討中と報じられています。この手法は、循環的な資金の流れをさらに何層にも重ねることになり、関係性の不透明さを増すとの指摘もあります。 OpenAIサム・アルトマンCEO自身も、先月「AIはバブルだ」と認め、「誰かが驚異的な額の金を失うだろう」と警告しています。AIへの期待が天文学的な予測に達しない場合、何が起こるのでしょうか。現在の巨額投資が過剰だったと判明するリスクは、認識すべき課題と言えるでしょう。 もしAIバブルが崩壊した場合、建設された巨大データセンターはすぐには消えません。2001年のドットコムバブル崩壊後、敷設された光ファイバー網が後のインターネット需要の受け皿となったように、これらの施設も他用途に転用される可能性はあります。しかし、その場合でも投資家はAIブームの価格で投資した分の巨額損失を被る可能性があります。

Google Cloud、次世代AI企業の囲い込みで覇権狙う

Google Cloudが、次世代のAIスタートアップ企業の獲得に全力を注いでいます。NvidiaOpenAI提携など、巨大企業同士の連携が加速するAIインフラ市場で、Googleは将来のユニコーン企業を早期に囲い込む戦略を選択。クラウドクレジットの提供や技術支援を通じて、自社プラットフォームへの取り込みを急いでいます。これは、AI市場の主導権を巡る競争が新たな局面に入ったことを示しています。 AIインフラ市場では、NvidiaOpenAIの1000億ドル規模の提携や、MicrosoftAmazonOracleによる大型投資など、既存大手間の連携が加速しています。こうした巨大ディールは特定の企業連合が市場を支配する構図を生み出しており、Google Cloudは一見するとこの流れから取り残されているように見えます。 しかし、Google Cloudは異なる賭けに出ています。同社のフランシス・デソウザCOOによれば、世界の生成AIスタートアップの60%がGoogle Cloudを選択。同社は将来有望な企業が巨大化する前に「主要コンピューティングパートナー」として関係を築くことに注力し、今日の巨人を巡る争いよりも価値があると見ています。 GoogleはAIスタートアップに対し、最大35万ドルのクラウドクレジットや、同社の技術チームへのアクセス、マーケットプレイスを通じた市場投入支援などを提供しています。これにより、スタートアップは初期コストを抑えながら、Googleのエンタープライズ級のインフラとAIスタックを活用できるという大きな利点を得られるのです。 Google Cloud戦略の核となるのが「オープンな姿勢」です。自社のAIチップTPU」を他社のデータセンターに提供する異例の契約を結ぶなど、あらゆる階層で顧客に選択肢を提供。競合に技術を提供してもエコシステム全体の拡大を優先する、長年の戦略を踏襲しています。この戦略は、競合他社との差別化にどう影響するのでしょうか。 この戦略は、独占禁止法に関する規制当局の懸念を和らげる狙いもあると見られています。オープンなプラットフォームとして競争を促進する姿勢を示し、自社の検索事業における独占的な地位をAI分野で乱用するとの批判をかわす狙いです。同時に、未来の巨大企業との関係構築で長期的な優位性を確保します。

アリババ、NVIDIAと提携し物理AI開発基盤を導入

中国の電子商取引大手アリババは24日、米半導体大手NVIDIAとの提携を発表しました。NVIDIAが提供するロボットや自動運転向けの物理AI開発ツールを、自社のAIクラウドプラットフォームに統合します。この提携は、物理世界で動作するAIの開発を加速させることが目的です。 具体的には、NVIDIAの「Physical AI」ソフトウェアスタックを顧客に提供します。これにより開発者は、現実世界の環境を忠実に再現した3Dのデジタルツインを構築できます。この仮想空間で生成された合成データを用いることで、AIモデルを効率的かつ安全に訓練することが可能になります。 この技術は、特にロボティクスや自動運転車、スマート工場、倉庫といった分野での活用が期待されています。現実世界でのテストが困難または危険なシナリオでも、仮想環境でAIを訓練できるため、開発サイクルが大幅に短縮される可能性があります。 今回の提携は、AI事業を強化するアリババの戦略の一環です。同社はAI技術への投資を従来の500億ドルの予算を超えて拡大すると表明。ブラジルやフランスなどでデータセンターを新設し、世界91拠点にまでインフラを拡大する計画も明らかにしました。 アリババは同日、最新の大規模言語モデル(LLM)「Qwen 3-Max」も発表しました。1兆パラメータで訓練されたこのモデルは、同社史上最大かつ最も高性能とされ、特にコーディングやAIエージェントとしての活用に適していると主張しています。 一方のNVIDIAも、AI分野で積極的な投資を続けています。最近ではインテルへの50億ドルの出資や、OpenAIへの最大1000億ドルの投資計画を発表しており、AIエコシステムにおける影響力を一層強めています。

OpenAI、Oracle・SoftBankと米でDC5拠点新設

AI開発のOpenAIは2025年9月23日、OracleおよびSoftBank提携し、米国内に5つのAIデータセンターを新設すると発表しました。「スターゲイト」計画の一環で、高性能AIモデルの開発・運用基盤を強化します。これにより米国のAI分野における主導権確保を目指します。 新設されるデータセンターは合計で7ギガワットの電力を消費する計画で、これは500万世帯以上の電力に相当します。Oracleとはテキサス州など3拠点で、SoftBankとはオハイオ州とテキサス州の2拠点で開発を進めます。これにより、OpenAIのAI開発に必要な膨大な計算資源を確保します。 この大規模投資の背景には、AIモデルの性能向上が計算能力に大きく依存するという現実があります。CEOのサム・アルトマン氏は「AIはインフラを必要とする」と述べ、米国がこの分野で後れを取ることは許されないと強調しました。特に、急速にAIインフラを増強する中国への対抗意識が鮮明です。 今回の発表は同社のインフラ投資加速の一端です。先日には半導体大手Nvidiaから最大1000億ドルの投資を受け、AIプロセッサ購入やデータセンター建設を進める計画も公表しました。AI開発競争は、巨額の資本を投じるインフラ整備競争の様相を呈しています。 「スターゲイト」は現在、Microsoftとの提携を除くOpenAIの全データセンタープロジェクトの総称として使われています。国家的なAIインフラ整備計画として位置づけられ、トランプ政権も規制緩和などでこれを後押ししています。米国のAIリーダーシップを確保するための国家戦略の一環と言えるでしょう。 一方で専門家からは懸念も上がっています。計算規模の拡大だけがAI性能向上の唯一解ではないとの指摘や、膨大な電力消費による環境負荷を問題視する声があります。インフラの規模だけでなく、市場が求めるアプリケーションを創出できるかが、真の成功の鍵となりそうです。

NVIDIA、AIでエネルギー効率化を加速 脱炭素社会へ貢献

NVIDIAは2025年9月23日からニューヨーク市で開催された「クライメート・ウィークNYC」で、AIがエネルギー効率化の鍵を握ることを発表しました。「アクセラレーテッド・コンピューティングは持続可能なコンピューティングである」と強調し、LLMの推論効率が過去10年で10万倍に向上した実績をその根拠として挙げています。 AIはエネルギー消費を増やすだけでなく、それを上回る削減効果をもたらすのでしょうか。調査によれば、AIの全面的な導入により2035年には産業・運輸・建設の3分野で約4.5%のエネルギー需要が削減されると予測されています。AIは電力網の異常を迅速に検知し、安定供給に貢献するなどインフラ最適化を可能にします。 同社はスタートアップとの連携も加速させています。投資先のEmerald AI社と協力し、電力網に優しくエネルギー効率の高い「AIファクトリー」の新たな参照設計(リファレンスデザイン)を発表しました。あらゆるエネルギーが知能生成に直接貢献するよう最適化された、次世代データセンターの実現を目指します。 NVIDIAは自社製品の環境負荷低減にも注力しています。最新GPUプラットフォーム「HGX B200」は、前世代の「HGX H100」に比べ、実装炭素排出強度を24%削減しました。今後も新製品のカーボンフットプリント概要を公表し、透明性を高めていく方針です。自社オフィスも100%再生可能エネルギーで運営しています。 さらに、AIは気候変動予測の精度向上にも貢献します。高解像度のAI気象モデルは、エネルギーシステムの強靭性を高めます。同社の「Earth-2」プラットフォームは、開発者が地球規模の気象・気候予測アプリケーションを構築するのを支援し、再生可能エネルギーの導入拡大にも繋がる重要な技術となっています。

オラクル、AI覇権へ共同CEO体制 新世代リーダー2名起用

米ソフトウェア大手オラクルは22日、クレイ・マゴウイルク氏とマイク・シシリア氏を共同最高経営責任者(CEO)に昇格させたと発表しました。AI(人工知能)インフラ市場での主導権獲得を加速させる狙いです。2014年から同社を率いてきたサフラ・カッツ氏は、取締役会の執行副議長という新たな役職に就きます。 この経営刷新の背景には、AI分野での急速な事業拡大があります。オラクルは最近、OpenAIと3000億ドル、メタと200億ドル規模のクラウドコンピューティング契約を締結したと報じられました。AIの学習と推論に不可欠な計算資源の供給元として、その存在感を急速に高めています。 新CEOに就任する両氏は、オラクルの成長を支えてきた実力者です。マゴウイルク氏はAWS出身で、オラクルクラウド事業の創設メンバーとしてインフラ部門を率いてきました。一方、シシリア氏は買収を通じてオラクルに加わり、インダストリー部門のプレジデントとして事業を推進してきました。 カッツ氏は声明で「オラクルは今やAIの学習と推論で選ばれるクラウドとして認知されている」と述べました。さらに「会社の技術と事業がかつてないほど強力な今こそ、次世代の有能な経営陣にCEO職を引き継ぐ適切な時期だ」と、今回の交代の意義を強調しました。 オラクルのAIへの注力は、OpenAIソフトバンクと共に参加する5000億ドル規模のデータセンター建設計画「スターゲイト・プロジェクト」にも表れています。今回の新体制は、巨大プロジェクトを推進し、AI時代におけるクラウドの覇権を確固たるものにするという強い意志の表れと言えるでしょう。

NVIDIA、OpenAIに最大14兆円投資 巨大AI基盤構築

半導体大手のNVIDIAと「ChatGPT」を開発するOpenAIは2025年9月22日、AI開発のインフラを共同で構築する戦略的パートナーシップを発表しました。NVIDIAは、OpenAIが建設するAIデータセンターの規模に応じて、最大1000億ドル(約14兆円)を段階的に投資します。OpenAINVIDIA製のGPUを数百万個規模で導入し、少なくとも10ギガワットの計算能力を確保する計画です。次世代AIモデルの開発・運用に不可欠な膨大な計算資源を確保する狙いがあります。 今回の提携は、NVIDIAのジェンスン・フアンCEOが「史上最大のAIインフラプロジェクト」と評する大規模なものです。OpenAIは、NVIDIAの次世代プラットフォーム「Vera Rubin」を含むシステムを導入。OpenAIサム・アルトマンCEOは「計算インフラは未来経済の基盤になる」と述べ、AIのブレークスルー創出への期待を示しました。今後のAI開発の行方を大きく左右する動きとなりそうです。 OpenAIはこれまで、最大の投資家であるMicrosoftクラウドに大きく依存してきました。しかし、今年1月に提携内容を変更して以降、Oracleとの大規模契約など、計算資源の調達先を積極的に多様化しています。今回の提携もその戦略を加速させるものです。特定の企業への依存リスクを低減し、AI開発の主導権を維持する狙いがうかがえます。 NVIDIAによる投資は、OpenAINVIDIAGPUを購入するための資金となり、最終的にNVIDIAの売上に還流する構造です。市場関係者はこれを「好循環」と見ており、AIインフラ市場における同社の支配的地位をさらに強固にする動きとして評価しています。AIの需要拡大が自社の成長に直結するビジネスモデルを確立したと言えるでしょう。 計画されている10ギガワットという電力は、原子力発電所約10基分に相当します。AIデータセンター電力消費は世界的に急増しており、国際エネルギー機関(IEA)も警鐘を鳴らしています。電力網への負担や環境への影響は、AIの普及における大きな課題となり、解決策として原子力などの活用も模索されています。 AIの能力向上を支えるインフラ投資競争は、業界全体で激化しています。Metaは2028年末までに6000億ドルを投じる計画で、MicrosoftAmazonも原子力発電所と提携するなど、大規模なデータセンター建設と電力確保に奔走しています。AI競争は、もはやモデル開発だけでなくインフラ確保の競争でもあるのです。 今回の計画では、最初のシステムが2026年後半に稼働を開始する予定です。AIが社会に浸透するにつれ、その頭脳を支える「AI工場」の重要性は増すばかりです。この巨大プロジェクトの成否は、AI業界全体の未来を左右する可能性があります。企業は自社のAI戦略において、計算資源の確保をどう進めるか問われています。

メタ社、ルイジアナ州に巨大データセンター建設へ 税優遇と電力確保

ルイジアナ州公共サービス委員会は8月20日、メタ社が計画する巨大データセンター電力を供給するため、天然ガス発電所3基の建設を承認しました。この計画には巨額の税制優遇措置も含まれています。データセンターは完成すると2ギガワット以上の電力を消費する見込みです。 この決定は、審議プロセスが性急だったとして批判を浴びています。反対派は、投票が前倒しされ、電気料金の高騰や水不足といった住民の懸念を十分に議論する時間がなかったと主張。本来は10月まで審議される可能性があったにもかかわらず、手続きが急がれたと指摘しています。 メタ社は巨額の税制優遇も受けます。投資額と雇用数に応じて固定資産税が最大80%減免される計画です。しかし契約では地元雇用の保証がなく、「フルタイム雇用」の定義も複数のパートタイム職の組み合わせを認めるなど、その実効性が問われています。 州当局は、計画が貧困率の高い地域に100億ドルの投資と最大500人の雇用をもたらすと強調しています。経済開発団体も、住民を貧困から救う絶好の機会だと証言しました。しかし、約束通りの経済効果が生まれるかは不透明な状況です。 住民の負担増も懸念材料です。発電所の建設費はメタ社が融資の一部を負担しますが、5億5000万ドルにのぼる送電線の建設費は公共料金利用者が支払います。IT大手を誘致するための優遇措置が過剰ではないかとの指摘も出ています。 データセンターへの過度な優遇は他州でも問題視されています。市場の変化で計画が遅延・放棄されるリスクも存在し、その場合、州は活用困難な巨大施設を抱えかねません。AIインフラへの投資と地域社会への貢献のバランスが改めて問われています。

AI電力需要予測は過大か、不要な化石燃料投資リスクを指摘

米国のNPOなどが今月発表した報告書で、AIの急成長に伴う電力需要の予測が過大である可能性が指摘されました。この予測に基づき電力会社が不要なガス発電所を建設すれば、消費者の負担増や環境汚染につながるリスクがあると警告。テック企業や電力会社に対し、透明性の高い需要予測と再生可能エネルギーへの移行を求めています。 生成AIの登場以降、エネルギー効率の向上で十数年横ばいだった米国電力需要は増加に転じました。AI向けのデータセンターは、従来のサーバーラックが家庭3軒分程度の電力を使うのに対し、80〜100軒分に相当する電力を消費します。これはまさに「小さな町」ほどの電力規模に相当します。 なぜ予測が実態以上に膨らむのでしょうか。報告書は、データセンター開発業者の投機的な動きを指摘します。彼らは資金や顧客が未確保のまま、複数の電力会社に重複して電力供給を申請するケースがあり、これが需要予測を水増ししている一因と見られています。 実際、全米の電力会社はハイテク業界の予測より50%も高い需要増を計画しています。ある大手電力会社のCEOは、電力網への接続申請は、実際に具体化するプロジェクトの「3〜5倍」に達する可能性があると認め、予測の不確実性を指摘しています。 不確実な需要予測にもかかわらず、電力会社はガス火力発電所の新設を進めています。これは電力会社の収益構造上、インフラ投資が利益に直結しやすいためです。結果として、不要な設備投資のコストが消費者の電気料金に転嫁されたり、化石燃料への依存が高まったりする恐れがあります。 こうしたリスクを避けるため、報告書は解決策も提示しています。電力会社には、開発業者への審査強化や契約条件の厳格化を提言。テック企業には、技術の省エネ化をさらに進め、再生可能エネルギーへの投資を加速させるよう強く求めています。AIの持続的な発展には、エネルギー問題への慎重な対応が不可欠です。

AIの電力問題、データセンター宇宙移設で打開策を模索

OpenAIサム・アルトマンCEOらが、AIの普及で急増するデータセンター電力消費問題に対応するため、施設を宇宙空間に移設する構想を提唱しています。この構想は、宇宙で太陽光を24時間利用してエネルギーを賄い、地上の電力網や水資源への負荷を軽減することが狙いです。スタートアップによる実験も始まっていますが、コストや技術、規制面での課題も多く、実現には時間がかかるとみられています。 AIデータセンター電力需要は、2030年までに最大165%増加すると予測されています。現在、こうした施設のエネルギーの半分以上は化石燃料に依存しており、気候変動対策の進展を脅かす存在となっています。この深刻な状況が、新たな解決策を模索する大きな動機となっているのです。 この宇宙移設構想を支持しているのは、アルトマン氏だけではありません。Amazon創業者のジェフ・ベゾス氏や元Google CEOのエリック・シュミット氏もこのアイデアに投資しています。アルトマン氏は、太陽の周りにデータセンター群を構築し、そのエネルギーを最大限に活用するという壮大なビジョンも語っています。 データセンターを宇宙へ移設する最大の利点は、エネルギー問題の解決です。24時間365日、遮られることなく太陽光エネルギーを利用できます。さらに、地上での課題である水資源の大量消費や、騒音・大気汚染といった地域社会への負担を根本から解消できる可能性を秘めているのです。 技術的な実現可能性も見え始めています。カリフォルニア工科大学の研究チームは、低コストで発電可能な軽量の宇宙太陽光発電システムを提案しました。しかし、宇宙空間ではデータ処理速度が地上より遅くなる可能性や、宇宙放射線による機器への影響、故障時の修理やアップグレードが極めて困難であるといった技術的課題が山積しています。 すでに複数のスタートアップが、この構想の実現に向けて動き出しています。小型のデータセンターを搭載した衛星の打ち上げ計画や、月面にデータを保管する試みも行われました。しかし、これらはまだ実験段階であり、ハーバード大学の経済学者は、産業規模で地上の施設と競争できるようになるかは予測が難しいと指摘しています。 現時点では、データセンターを宇宙に設置するコストは、地上に建設するよりもはるかに高額です。そのため、利益を追求する企業は地上での拡張を優先するでしょう。しかし、地上でのデータセンター建設に対する規制が世界的に強化される中、規制がほとんど存在しない宇宙空間が、将来的に企業にとって魅力的な選択肢となる可能性は否定できません。

Nvidia、Intelに50億ドル出資 AI半導体で共同開発へ

AI半導体最大手のNvidiaは18日、米Intelに50億ドルを出資し戦略的提携を結ぶと発表しました。両社はデータセンターとPC向けの次世代半導体を共同開発します。AI市場の優位性を固めたいNvidiaと、巻き返しを図るIntelの思惑が一致した形で、業界の競争環境に大きな影響を与えそうです。 データセンター向けでは、IntelがNvidiaのAI基盤に最適化したx86系CPUを製造します。両社のチップNvidia独自の高速技術「NVLink」で接続。AIの膨大な処理に必要なチップ間のデータ転送を高速化し、大規模モデルの学習や推論を効率化します。この協力が企業のAI導入を加速させるかもしれません。 PC市場向けには、Intelのx86技術とNvidiaの高性能GPU「RTX」のチップレットを統合した新しいSoCを開発します。これにより、従来にない処理能力を持つ統合型ノートPCが生まれると期待されています。NvidiaのフアンCEOは年間1.5億台のノートPC市場への進出に意欲を示しています。 近年、AI半導体開発で後れを取っていたIntelにとって、今回の提携は大きな転機です。Nvidiaとの協業は、AI市場でのシェア回復と競合AMDに対抗する足がかりとなります。発表を受けIntelの株価は一時30%以上急騰し、市場の高い期待感を映し出しました。 一方、Nvidiaのジェンスン・フアンCEOは、提携が年間「250億ドルから500億ドル規模の事業機会」を生むと試算。IntelのCPU技術やエコシステムを活用し、自社のAIプラットフォームをさらに拡大する狙いです。フアンCEOはこの投資を「素晴らしいものになる」と強調しました。 今回の発表では、Intelの半導体受託製造(ファウンドリ)をNvidiaが利用するかは明言されませんでした。Nvidiaは現在、製造の大部分を台湾のTSMCに依存しています。両社はまず製品協業を優先し、ファウンドリ活用は将来検討するとしており、今後の動向が注目されます。

NVIDIAのBlackwell、AI工場を駆動する新プラットフォーム

NVIDIAは最新アーキテクチャ「Blackwell」を、単なる半導体チップではなく「AI工場」を駆動するプラットフォームだと説明します。次世代AIモデルはパラメータ数が1兆を超えると予測され、膨大な計算需要が生まれています。Blackwellはこうした需要に応えるべく、システム全体で性能を追求する設計思想に基づいています。 その中核がラック規模システム「NVIDIA GB200 NVL72」です。これは単一の巨大GPUとして動作するよう設計され、AI推論の効率を劇的に高めます。重さ1.5トンのラックに60万以上の部品と約3.2kmの配線が詰め込まれ、ハードウェアとソフトウェアが密に統合されています。 性能の源泉は、2つのBlackwell GPUと1つのGrace CPUを統合した「Grace Blackwellスーパーチップ」です。高速インターコネクト技術「NVIDIA NVLink」で直結し、CPUとGPUがメモリを直接共有します。これによりAIワークロードの遅延を減らし、スループットを高めます。 GB200 NVL72内では「NVLink Switch」が性能ボトルネックを防ぎます。5,000本以上の銅線ケーブルが72基のGPUを網の目のように接続。毎秒130テラバイトという驚異的な速度でデータを移動させます。これはインターネット全体のピーク時トラフィックを1秒未満で転送できる速度に匹敵します。 AI工場では数万台のGB200 NVL72が一体で機能する必要があります。これを「Spectrum-X Ethernet」や「Quantum-X800 InfiniBand」といったネットワーク技術が実現。データセンターレベルでの統一的な動作を可能にし、全GPUが工場内のデータネットワークへ直接接続される仕組みを構築します。 データセンターという巨大なコンピュータを動かすOSが「NVIDIA Dynamo」です。多数のGPUにまたがるAI推論リクエストを調整・最適化し、需要に応じてGPUリソースを動的に割り当てます。これにより工場全体の生産性と収益性を最大化し、運用コストを低減します。 Blackwellはもはや単なるチップではなく、次世代の産業革命を支えるAI工場のエンジンです。すでに世界最大級のコンピューティングクラスターがこのアーキテクチャを基盤に構築されており、AIによるイノベーションをさらに加速させていくことが期待されます。

MS、鴻海旧工場跡に世界最強AIデータセンター建設

マイクロソフトは2025年9月18日、米ウィスコンシン州にある鴻海(Foxconn)の旧工場跡地に、33億ドルを投じて「世界で最も強力」と謳うAIデータセンターを建設すると発表しました。2026年初頭の稼働を予定しており、AIのトレーニング能力を飛躍的に向上させる狙いです。この計画は、かつて頓挫したプロジェクト跡地を最先端のAIインフラ拠点として再生させるものです。 この巨大なデータセンターは、一体どれほどの性能を持つのでしょうか。施設にはNVIDIAの最新GPU「GB200」を数十万基搭載し、その性能は現行の最速スーパーコンピュータの10倍に達すると同社は説明しています。この圧倒的な計算能力により、AIモデルのトレーニングが劇的に加速されることが期待されます。 施設の規模も桁外れです。データセンターは315エーカー(約127ヘクタール)の敷地に3棟の建物が建設され、総面積は120万平方フィート(約11万平方メートル)に及びます。内部には地球4.5周分に相当する長さの光ファイバーが張り巡らされ、膨大なGPU群を接続します。 近年、AIの膨大なエネルギー消費が問題視される中、マイクロソフトは環境への配慮を強調しています。水を一度充填すれば蒸発しないクローズドループ冷却システムを採用し、水資源への影響を最小限に抑えるとしています。持続可能性への取り組みをアピールする狙いもあるようです。 建設地は、かつて鴻海が液晶パネル工場を建設すると発表しながらも計画が大幅に縮小された因縁の場所です。今回の投資は、この未利用地を米国のAI産業を支える重要拠点へと生まれ変わらせる試みといえるでしょう。地域経済への貢献も期待されています。 マイクロソフトはウィスコンシン州の拠点に加え、米国内で複数の同様のAIデータセンター「Fairwater」を建設中であることを明らかにしました。これは、生成AIの普及に伴う爆発的な計算需要に対応する全社的な戦略の一環であり、今後のAI開発競争における同社の優位性を強固にするものです。

フアンCEOがGemini「Nano Banana」を絶賛、AIは「格差解消の機会」

フアン氏熱狂のAI画像生成

Google Geminiの「Nano Banana」を熱狂的に称賛
公開後数日で3億枚画像生成増を記録
AIの民主化を推進する技術と評価

CEOの高度なAI活用術

日常業務や公開スピーチ作成にAIを多用
AIを「考えるパートナー」として活用
タスクに応じて複数モデルを使い分け

英国AI市場への戦略

NVIDIA英国AIインフラ企業に6.83億ドルを出資
英国のAI潜在能力を高く評価し謙虚すぎると指摘

NVIDIAのジェンスン・フアンCEOは、Google GeminiのAI画像生成ツール「Nano Banana」を熱狂的に称賛しました。同氏はロンドンで英国への大規模AI投資を発表した際、AIは「技術格差を解消する最大の機会」であると主張。AIの未来について非常に楽観的な見解を示しています。

フアンCEOが熱狂的に支持するNano Bananaは、公開から数日でGemini画像生成数を3億枚急増させた人気機能です。これは、背景の品質を維持したまま、顔や動物などのオブジェクトに精密な編集を可能にする点が評価され、ユーザーに広く受け入れられています。

フアン氏は日常業務から公開スピーチの準備まで、AIを積極的に利用しています。AIワープロを使用することで、自身の状況や意図を記憶し、適切な提案を行う「思考のパートナー」として生産性を劇的に高めていると説明しています。

同氏はタスクに応じてAIモデルを厳密に使い分けています。技術的な用途にはGeminiを、芸術的な要素が強い場合はGrokを、高速な情報アクセスにはPerplexityを、そして日常的な利用にはChatGPTを楽しむと述べています。

さらに重要なリサーチを行う際には、フアン氏独自の高度な検証プロセスを採用しています。同じプロンプト複数のAIモデルに与え、互いの出力結果を批判的に検証させてから、最適な成果を選び出す手法です。

フアン氏は、AIは電気やインターネットのように、すべての人に開かれ、誰一人として取り残されてはならないという哲学を持っています。「この技術は使い方が非常に簡単であり、技術格差を埋める最大のチャンスだ」と強調し、AIの民主化を訴えています。

NVIDIAは、英国データセンター構築企業Nscaleに対し、6億8300万ドル(約1,000億円超)の株式投資を実施しました。フアン氏は、英国が産業革命やDeepMindの創出に貢献した歴史を踏まえ、同国のAI進展における潜在能力を高く評価しています。

Hugging Face、仏Scalewayを推論プロバイダーに統合しAI利用の選択肢拡大

統合の核心と利点

Scalewayを新たな推論プロバイダーに追加。
gpt-ossQwen3など人気モデルへ容易にアクセス。
モデルページからサーバーレスで即時推論可能。
ウェブUIとクライアントSDKからシームレス利用。

Scalewayの技術的強み

欧州データセンターによるデータ主権と低遅延。
トークンあたり€0.20からの競争的価格
構造化出力、ファンクションコーリングに対応。
高速応答(200ms未満)を実現。

柔軟な課金体系

カスタムキー利用でプロバイダーに直接請求
HF経由の請求は追加マークアップなし
PROユーザーは毎月2ドル分の推論クレジット付与。

Hugging Faceは、フランスのクラウドプロバイダーであるScalewayを新たな「Inference Provider(推論プロバイダー)」としてハブに統合しました。これにより、経営者エンジニアgpt-ossQwen3などの人気オープンウェイトモデルを、Scalewayの提供するフルマネージドなサーバーレス環境で利用可能になります。この統合は、AIモデルのデプロイと利用の柔軟性を高め、特に欧州におけるデータ主権への要求に応えるものです。

Scalewayが提供するのは「Generative APIs」と呼ばれるサーバーレスサービスであり、トークンあたり0.20ユーロ/100万トークンからという競争力のある従量課金制が特徴です。ユーザーはシンプルなAPIコールを通じて、最先端のAIモデルにアクセスできます。この手軽さとコスト効率は、大規模な本番環境での利用を検討する企業にとって大きなメリットとなります。

インフラストラクチャはパリの欧州データセンターに置かれており、欧州の利用者に対してデータ主権の確保と低遅延の推論環境を提供します。応答速度はファーストトークンで200ミリ秒未満を達成しており、インタラクティブなアプリケーションやエージェントワークフローへの適用に最適です。テキスト生成とエンベディングモデルの両方をサポートしています。

Scalewayのプラットフォームは高度な機能にも対応しています。具体的には、応答形式を指定できる構造化出力や、外部ツール連携を可能にするファンクションコーリング、さらにマルチモーダル処理能力を備えています。これにより、より複雑で実用的なAIアプリケーションの開発が可能になります。

利用者は、HFのウェブサイトUIだけでなく、PythonやJavaScriptのクライアントSDKからシームレスに推論を実行できます。課金方式は二通りあり、ScalewayのAPIキーを使う場合は直接プロバイダーに請求されます。HF経由でルーティングする場合は、HFによる追加のマークアップは発生しないため、透明性が高い価格で利用できます。

Hugging FaceのPROプランユーザーには、毎月2ドル分の推論クレジットが特典として提供されます。このクレジットは、Scalewayを含む複数のプロバイダーで横断的に使用可能です。本格的な商用利用や高いリミットが必要な場合は、PROプランへのアップグレードが推奨されています。

Google、アイオワ州に70億ドル追加投資。AIとクラウド基盤を強化

大規模投資の概要

追加投資額は70億ドル規模
投資地域は米国アイオワ州
クラウドとAIインフラの大幅増強
技術人材育成プログラムを推進

戦略的効果と目標

米国におけるAIリーダーシップ維持
AI主導経済のエネルギー基盤強化
数百万のキャリア機会と雇用創出
米国サイバーセキュリティ強化

Googleは2025年9月、米国アイオワ州に対し、クラウドおよびAIインフラ強化を目的として、追加で70億ドルの大規模投資を行うと発表しました。この投資は、技術基盤の拡充だけでなく、人材育成プログラムにも充当されます。AIが牽引する新たな経済時代において、米国でのイノベーションと経済機会の創出を加速させる、戦略的な一歩です。

今回の70億ドルの資金は、主にデータセンターなどの技術インフラと研究開発に投入されます。特にAI主導の経済を支えるため、エネルギー容量の拡大に注力しているのが特徴です。Googleは、AIを安全かつ効率的に運用するための強固な基盤整備を進め、今後の大規模なAI需要に対応する構えです。

この大規模投資の背景には、米国のAI分野における世界的なリーダーシップを維持する狙いがあります。技術インフラの強化を通じて、先端的な科学的ブレイクスルーを推進するとともに、米国サイバーセキュリティ体制の強化にも寄与します。これは、国家的な技術優位性を確保するための重要な手段となります。

投資は地域経済に大きな波及効果をもたらし、特に数百万人のアメリカ人に新たなキャリア機会を創出すると期待されています。インフラ投資と並行して、Googleワークフォース・デベロップメント(人材育成)プログラムにも資金を投じます。これにより、AI時代に求められるスキルを持った労働力を育成し、市場価値向上を支援します。

米巨大テック、英国AIインフラに巨額投資合戦

投資競争の主役たち

MSは300億ドル(4.5兆円)を4年間で投資
Google68億ドル(1兆円)を今後2年間で
NVIDIAは最大150億ドル規模のR&D;投資
MSが23,000基超GPU英国最大スパコン構築

英国の「主権AI」戦略

OpenAI/NVIDIA/NscaleによるStargate UK
専門用途向けに国内処理能力を確保
公共サービスや国家安全保障での利用を想定
ノースイーストにAI成長ゾーンを指定

米国巨大テック企業群が、英国のAIインフラ構築に向け、同時期に巨額の投資計画を発表しました。特にマイクロソフトは300億ドル(約4.5兆円)という過去最大規模の投資を公表し、AI競争の主導権を握る構えです。これは英国のAI競争力強化、経済成長を目的としており、グーグルやOpenAI/NVIDIAもこれに追随する形で大規模なデータセンタースーパーコンピューター構築を進めます。

マイクロソフトは2025年から2028年にかけ、総額300億ドルを投じます。このうち約半分を投じて、パートナー企業Nscaleと共同で23,000基超のGPUを搭載した英国最大のスーパーコンピューターを建設する計画です。同日にグーグル(アルファベット)も2年間で68億ドル(約1兆円)の投資と新データセンター開設を発表しましたが、マイクロソフトはこれを大きく上回る規模を強調しています。

一方、OpenAINVIDIA、Nscaleと提携し、「Stargate UK」と呼ばれるAIインフラパートナーシップを発表しました。これは英国の「主権コンピューティング能力」の強化を目的としています。OpenAIの最先端AIモデルを、公共サービスや金融、国家安全保障といった機密性の高い専門的なユースケースに利用するため、国内のローカルなコンピューティング能力で実行可能にします。

これらの投資は、ドナルド・トランプ大統領の訪英に合わせて発表され、米英両国間の強力な技術提携を象徴しています。英国政府は、AI分野で世界的なリーダーシップを確立することを目指しており、今回の巨額投資英国経済への強力な信任投票」と評価しています。計画には、北東部地域にAI成長ゾーンを指定する施策も含まれています。

AIインフラ構築に加え、各社は英国の労働力強化にも貢献します。OpenAIは、AI教育プログラムである「OpenAI Academy」を導入し、2030年までに750万人の労働者のスキルアップを目指す政府の目標を支援します。また、これらの投資は、データセンター関連事業を中心に、数千人規模の新規雇用創出につながる見込みです。

しかし、データセンターの乱立に対する懸念も高まっています。大規模なハイパースケールデータセンター膨大な電力と水を消費するため、環境団体や市民団体は、気候目標達成の妨げや電力価格の高騰につながると強く批判しています。英国政府に対し、電力・水利用に関する戦略の見直しを求める声が上がっています。

SageMaker HyperPod、LLM学習の通信遅延を解消するトポロジー認識型スケジューリング導入

導入された新機能の概要

物理的配置を考慮するトポロジー認識型スケジューリング
大規模AIワークロードの最適化を目的
Amazon EKSクラスター上でのリソース管理を効率化

LLM学習効率化への貢献

ネットワークホップ削減による通信速度の向上
GPUクラスターの利用効率とスループットを改善

活用方法と技術要件

Kubernetesマニフェストでの必須/推奨トポロジー設定
SageMaker HyperPod CLIからのジョブ送信に対応
Task Governanceアドオン(v1.2.2以降)が必要

Amazon Web Services(AWS)は、大規模な生成AI(LLM)モデルのトレーニング効率を飛躍的に向上させるため、Amazon SageMaker HyperPodのタスクガバナンス機能に「トポロジー認識型スケジューリング」を導入しました。この新機能は、GPUインスタンス間のネットワーク通信遅延という、LLM学習における最大のボトルネックの一つを解消します。

生成AIワークロードは通常、Amazon EC2インスタンス間で広範な通信を必要とし、ネットワーク帯域幅と遅延が学習時間全体に大きく影響します。データセンター内のインスタンス配置は階層的な構造を持っており、同じ物理単位内に配置されたインスタンス間の通信は、異なる単位間の通信よりもはるかに高速になるため、配置最適化が重要でした。

このトポロジー認識型スケジューリングは、EC2のネットワークトポロジー情報を活用し、ジョブ提出時に物理的な近接性を考慮してリソースを割り当てます。具体的には、クラスター内のインスタンスの配置をネットワーク階層構造(レイヤー1〜3)に基づいて把握し、通信頻度の高いポッドを最も近いネットワークノードに集中配置します。

企業にとっての最大のメリットは、AIイノベーションの加速と市場投入までの時間(Time to Market)の短縮です。タスクガバナンス機能により、管理者やデータサイエンティストはリソース調整に時間を費やすことなく、効率的に計算リソースを利用できます。これは大規模なGPUクラスターを持つ組織全体の生産性向上に直結します。

エンジニアは、この新機能をKubernetesマニフェストファイルを通じて簡単に利用できます。ジョブ実行時に、全てのポッドを同一ネットワークノードに配置することを「必須(required)」とするか、「推奨(preferred)」とするかを選択可能です。また、SageMaker HyperPod CLIからもトポロジー指定パラメータを用いてジョブを送信することができ、柔軟な運用が実現します。