MetaのAIトップ、ルカン氏が独立し新会社設立へ

ルカン氏独立の背景

CEOとの路線対立が鮮明に
LLMより「世界モデル」を重視
Meta短期的な製品化への傾倒
AIモデルLlama 4の期待外れ

新会社の構想

物理世界を理解するAI開発
動画データから因果関係を学習
人間のような推論・計画能力の実現
完成には10年を要する可能性

MetaのチーフAIサイエンティストで、チューリング賞受賞者でもあるヤン・ルカン氏が、同社を退社し自身のスタートアップを立ち上げる計画であることが報じられました。新会社では、現在の主流である大規模言語モデル(LLM)とは異なる「世界モデル」と呼ばれるAIの開発に注力する見込みです。

退社の背景には、マーク・ザッカーバーグCEOとのAI開発における路線対立があります。ルカン氏はLLMには真の推論能力が欠けていると主張し、ザッカーバーグ氏の「超知能」開発ビジョンとは異なるアプローチを模索していました。

ルカン氏が提唱する「世界モデル」とは、テキストだけでなく動画や空間データから学習し、物理世界を内面的に理解するAIシステムです。これにより、因果関係のシミュレーションや、動物のような計画能力の実現を目指します。このアプローチは、完全に開発されるまで10年かかる可能性があるとされています。

この動きは、MetaのAI事業が苦戦する中で起きました。AIモデル「Llama 4」が競合に劣る性能を示したほか、AIチャットボットも消費者の支持を得られていません。社内では長期的な研究よりも短期的な製品化を急ぐ動きが強まっていました。

最近の組織再編も、ルカン氏の決断に影響した可能性があります。ザッカーバーグ氏はデータ関連スタートアップ創業者を巨額で迎え入れ、新たなスーパーインテリジェンスチームを設立。ルカン氏がその指揮下に入ったことは、自身の研究方針への事実上の不支持と見られています。

ザッカーバーグ氏はAI分野のリーダーとなるべく、数十億ドル規模の投資を続けています。今回のAIの巨匠の退社は、かつての「メタバース」への転換と同様に、その巨額投資の成果に疑問を投げかけるものとなるかもしれません。

Anthropic、米AIインフラに500億ドル投資

巨額投資の概要

Anthropic500億ドル投資
米国内にAI専用データセンター建設
テキサス・NY州で2026年中に稼働
自社AIClaudeの需要増に対応

提携と競合の動向

英国Fluidstack社提携
MetaOpenAI連合も巨額投資

経済効果と国家戦略

合計3,200人の雇用創出を見込む
米国のAIリーダーシップ強化に貢献

AIスタートアップAnthropicは11月12日、英国クラウド事業者Fluidstackと提携し、米国内のAIデータセンター建設に500億ドル(約7.5兆円)を投資すると発表しました。急増する自社AI「Claude」の需要に対応し、最先端研究を加速させるのが狙いです。新施設はテキサス州とニューヨーク州で2026年中に順次稼働を開始する計画です。

AnthropicはこれまでGoogleAmazonクラウドを利用してきましたが、今回の投資は自社専用インフラ構築への大きな一歩です。背景には、企業顧客が30万社を超え、大口顧客も1年で7倍に急増するなど、AI「Claude」への旺盛な需要があります。自社のワークロードに最適化された施設で、効率的な計算能力を確保し、さらなる成長を目指します。

パートナーに選ばれたFluidstackは、2017年設立の英国の新興企業です。その俊敏なインフラ構築能力が高く評価され、Metaやフランス政府の大型AIプロジェクトでも提携先に選ばれるなど、AIインフラ市場で急速に存在感を高めています。AI開発の最前線を走る企業にとって、信頼できるパートナーとなりつつあります。

AI開発競争は、計算基盤を支えるインフラ投資競争の様相を呈しています。Metaが今後3年で6000億ドル、ソフトバンクOpenAIらの連合も「スターゲイト」計画に5000億ドルを投じるなど、各社が巨額の資金をデータセンターに注ぎ込んでいます。今回のAnthropic投資も、この熾烈な競争下で優位性を保つための戦略的な一手と言えるでしょう。

このプロジェクトは、米国経済にも好影響を与えます。建設で2,400人、稼働後に800人の常勤雇用が生まれる見込みです。また、トランプ政権が掲げる「AI行動計画」の目標に沿うものであり、米国のAIリーダーシップ維持と国内技術インフラの強化に貢献する点も強調されています。民間投資が国家戦略を後押しする形です。

NVIDIA新GPU、AI学習ベンチマークで全制覇

Blackwell Ultraの圧倒的性能

MLPerf全7部門を完全制覇
LLM学習でHopper比4倍以上の性能
Llama 3.1 405Bをわずか10分で学習
唯一全テストに結果を提出した企業

新技術が支える記録更新

史上初のNVFP4精度での計算を導入
GB300 NVL72システムが初登場
画像生成モデルでも最高性能を記録
広範なパートナーエコシステムを証明

NVIDIAは、AIの性能を測る業界標準ベンチマーク「MLPerf Training v5.1」において、新GPUアーキテクチャ「Blackwell Ultra」を搭載したシステムで全7部門を制覇し、大規模言語モデル(LLM)の学習速度で新記録を樹立しました。この結果は、同社の技術的優位性とプラットフォームの成熟度を改めて示すものです。

今回初登場したBlackwell Ultra搭載の「GB300 NVL72」システムは、前世代のHopperアーキテクチャと比較して、同数のGPUでLLMの事前学習性能が4倍以上に向上しました。新しいTensor Coreや大容量メモリが、この飛躍的な性能向上を支えています。

性能向上の鍵は、MLPerf史上初となるNVFP4精度での計算です。より少ないビット数でデータを表現し、計算速度を大幅に高める新技術を導入。NVIDIAは、精度を維持しながらこの低精度計算を実用化した唯一の企業となりました。

大規模な学習においても新記録を達成しました。5,000基以上のBlackwell GPUを連携させることで、大規模モデル「Llama 3.1 405B」の学習をわずか10分で完了。これは、NVFP4の採用とスケーリング効率の向上による成果です。

今回から追加された新しいベンチマーク、軽量LLM「Llama 3.1 8B」と画像生成モデル「FLUX.1」でも、NVIDIA最高性能を記録しました。これは、同社のプラットフォームが最新の多様なAIモデルに迅速に対応できる汎用性の高さを示しています。

DellやHPEなど15のパートナー企業もNVIDIAプラットフォームで参加し、広範なエコシステムを証明しました。NVIDIA1年周期で革新を続けており、AI開発のさらなる加速が期待されます。AI導入を目指す企業にとって、その動向はますます重要になるでしょう。

@gosrumのXポスト: 私がllama-benchで実測した値です。ご参考までに。 すべてMXFP4です。 ・M2Ultra:65-80 ・M3 Ultra:70-85 ・Ryzen AI MAX+:40-50 ・RTX PRO 6000:150-190 ※右側の値はコンテキスト長が短い場合の最大 ど…

Copilotが開発貢献者に、GitHub社内活用術

Copilotが担う開発タスク

UI修正など単純作業の自動化
バグと不安定なテストの修正
新APIエンドポイントなど機能開発
データベース移行セキュリティ強化
コードベースの監査・分析と改善報告

人間とAIの新たな協業

AIが叩き台のコードを提案
人間はレビューと核心部分に集中

ソフトウェア開発プラットフォームのGitHub社が、AIコーディングアシスタントCopilot」を自社の開発プロセスに深く統合している実態を明らかにしました。Copilotは単なるコード補完ツールではなく、人間のエンジニアからIssueを割り当てられ、Pull Requestを作成する「貢献者」として、コードの保守から新機能開発まで幅広く担っています。

GitHubのコアリポジトリ内では、「@Copilot」として知られるAIエージェント開発チームの一員として活動しています。人間のエンジニアがIssueを割り当てると、Copilotは自律的に作業を開始し、解決策をコードとして提案するPull Requestを作成します。これは、AIが単なる補助機能から能動的な開発主体へと進化したことを示す好例です。

Copilotの大きな価値の一つは、時間のかかる退屈な作業の自動化です。例えば、古くなったフィーチャーフラグの削除、数百ファイルにまたがるクラス名のリファクタリング、ドキュメント内の大量の誤字脱字修正など、人間が敬遠しがちなメンテナンス作業をCopilotが一手に引き受けています。

その能力は保守作業に留まりません。本番環境で発生した複雑なバグの修正や、不安定なテストコード(Flaky Test)の安定化にも貢献しています。さらに、新しいREST APIエンドポイントの追加や社内ツールの機能改善など、ゼロから新しい価値を生み出す新機能開発も担当しているのです。

最も高度な活用例として、Copilot「リサーチャー」の役割も果たします。「コードベース内の認証クエリを包括的に分析し、改善点を報告せよ」といった曖昧な指示を与えると、Copilotは全体を調査し、分析結果と改善提案をまとめます。これにより、開発者は即座に解決策の検討に着手できます。

Copilotとの協業は、AIの提案を盲目的に受け入れるものではありません。Copilotが作成したPull Requestは、あくまで「最初の叩き台」です。人間はそれをレビューし、改良を加えたり、全く別のアプローチを検討したりします。これにより、ゼロからコードを書く手間を省き、問題解決の核心に集中できるのです。

GitHubの実践は、AIとの新しい協業モデルを提示しています。Copilotに開発業務の「退屈な80%」を任せることで、人間のエンジニアはアーキテクチャ設計やセキュリティ、UXといった「真に重要な20%」の業務に専門知識を注力できます。これは生産性向上だけでなく、開発者の仕事の質そのものを変革する可能性を秘めています。

OpenAI、新モデルGPT-5.1公開。対話能力と個性を強化

進化した2つの新モデル

Instantは適応的推論で精度向上
Thinkingは思考時間を動的に調整
両モデルとも対話スタイルがより自然に
指示追従性と応答速度のバランス改善

広がるパーソナライズ設定

応答トーンを8種類のプリセットから選択
「プロ」や「ユニーク」など新スタイル追加
応答の簡潔さや暖かさも微調整できる実験開始

OpenAIは11月12日、主力AIモデルの最新版「GPT-5.1」を発表しました。今回の更新では、より自然で人間らしい対話スタイルを実現する「GPT-5.1 Instant」と「GPT-5.1 Thinking」の2モデルを導入。さらに、応答トーンを細かく設定できるパーソナライズ機能を大幅に拡充し、ユーザーの多様なニーズに応えることを目指します。

今回のアップデートの背景には、「賢いだけでなく、話していて楽しいAI」を求めるユーザーの声がありました。GPT-5.1は、単なる情報処理能力の向上だけでなく、IQ(知能指数)とEQ(心の知能指数)の融合をテーマに開発。より親しみやすく、状況に応じた柔軟なコミュニケーションを実現します。

日常的に最も利用される「GPT-5.1 Instant」は、新たに「適応的推論」機能を搭載。複雑な質問に対しては一度思考してから回答することで、数学コーディングといった専門分野での精度が大幅に向上しました。同時に、応答の速さも維持しています。

一方、高度な推論を担う「GPT-5.1 Thinking」は、質問の難易度に応じて思考時間を動的に調整します。これにより、簡単なタスクはより速く、複雑な問題にはじっくり取り組むことが可能に。専門用語を減らした平易な表現も特徴で、技術的な内容の説明にも適しています。

パーソナライズ機能も大幅に進化しました。従来のプリセットに加え、「Professional(プロフェッショナル)」や「Quirky(ユニーク)」など新たな応答スタイルが追加され、全8種類から選択可能に。応答の簡潔さや絵文字の使用頻度なども微調整できる実験が始まり、より自分好みのAIアシスタントを育成できます。

このアップデートは、前回のGPT-5公開時に一部ユーザーから寄せられた性能への不満を払拭する狙いもあるようです。新モデルは有料ユーザーから順次提供が開始され、API経由での利用も可能になります。旧GPT-5モデルも3ヶ月間は並行して利用できるため、ユーザーは自身のペースで新旧モデルの性能を比較検討できます。

@SuguruKun_aiのXポスト: 速報。ChatGPTに新モデル『GPT-5.1』が追加。 ㅤ GPT-5をベースに、会話トーンがさらに自然&賢くなり、トーンの細かいカスタマイズも可能に。 ㅤ 活用事例をまとめました👇🧵 pic.twitter.com/KVUjT4q2IE

Weibo、低コスト小型AIで巨大モデル超え性能

低コストで巨大モデル超え

Weibo公開の15億パラメータLLM
後訓練コストはわずか7800ドル
数学・コードで巨大モデルを凌駕
商用利用可能なMITライセンス

新訓練手法と企業への示唆

新手法「SSP」で効率的な学習
多様な解を探求し最適解を増幅
エッジデバイスにも搭載可能
推論コストの大幅な削減を実現

中国のSNS大手Weiboが、オープンソースの小規模言語モデル(LLM)「VibeThinker-1.5B」を発表しました。このモデルはわずか15億パラメータと小型ながら、数学コーディング推論タスクで数百倍規模のモデルを凌駕する性能を達成。後訓練にかかった費用はわずか7800ドル(約120万円)で、AI開発における「規模の経済」という常識を覆す可能性を秘めています。

VibeThinker-1.5Bの性能は、多くのベンチマークで証明されています。特に数学コーディングの分野では、6710億パラメータのDeepSeek R1や、Anthropic社のClaude Opus 4といった巨大モデルと互角以上のスコアを記録しました。これは、モデルの性能がパラメータ数だけで決まるわけではないことを明確に示しています。

この驚異的な性能の背景には、「SSP(Spectrum-to-Signal Principle)」と呼ばれる独自の訓練手法があります。この手法は、学習を2つの段階に分けます。まず、教師ありファインチューニング(SFT)で多様な正解候補を生成。次に、強化学習(RL)を用いてその中から最も確からしい解を特定し、増幅させます。

SSPは、大規模なパラメータに頼らずとも、モデルが推論の「探索空間」を効率的に探ることを可能にします。最初に幅広い可能性(スペクトル)を探り、そこから最も強い信号(シグナル)を見つけ出すアプローチにより、小規模なモデルでも高い論理的思考力を獲得できるのです。これはAI開発のコスト構造を大きく変える可能性があります。

企業にとって、このモデルは非常に魅力的です。小型であるため、スマートフォンや車載システムなどのエッジデバイスにも搭載可能。推論コストは大規模モデルの20分の1から70分の1にまで削減できると試算されています。これにより、これまでコスト面で導入が難しかった高度なAI機能の実用化が加速するでしょう。

VibeThinker-1.5Bの登場は、AI開発のトレンドがパラメータ数の競争から、より効率的で洗練された訓練手法へと移行しつつあることを示唆しています。コスト、速度、そして制御のしやすさを求める企業にとって、このモデルは実用的なAI導入に向けた強力な選択肢となることは間違いありません。

AIがデバッグ自動化、DoorDashの工数1000時間削減

強化学習で障害原因を特定

システム全体のナレッジグラフを構築
SREの調査フローを数分で再現
調査のたびに学習し精度が向上

導入企業での圧倒的な成果

DoorDashで年間1000時間の工数削減
収益インパクトは数百万ドル規模
Foursquareで診断時間を90%短縮
AI生成コードのデバッグ危機に対応

Deductive AI社は2025年11月12日、ソフトウェアのデバッグや障害解析を自動化するAIプラットフォームを正式発表し、シードラウンドで750万ドル(約11億円)を調達しました。強化学習を用いたAIエージェントが、複雑なシステムの障害原因を数分で特定します。既に大手DoorDashでは年間1,000時間以上のエンジニア工数を削減しており、AIによるコード生成が加速する中で深刻化する「デバッグ危機」の解決策として注目されています。

なぜ今、このようなツールが求められるのでしょうか。背景には、AIコーディングアシスタントの普及があります。自然言語で手軽にコードを生成できる「Vibe codingが広まる一方、生成されたコードは保守性が低く、デバッグはますます困難になっています。ある調査では、エンジニア業務時間の最大50%をデバッグに費やしていると報告されており、この生産性のボトルネック解消が急務となっています。

Deductive AIの核心は、強化学習で訓練されたAIエージェントです。システムはコードやログから関係性をマッピングした「ナレッジグラフ」を構築し、障害発生時には複数のエージェントが連携して根本原因を突き止めます。既存の監視ツールが「何が起きたか」を示すのに対し、同社のAIは「なぜ起きたか」というコードレベルの因果関係まで解明する点が大きな違いです。

その効果は、導入企業で既に実証されています。食品デリバリー大手DoorDashでは、同社のAIを導入し、これまで数時間かかっていた障害調査が数分で完了するようになりました。結果として、年間1,000時間以上に相当するエンジニア生産性を向上させ、収益への貢献も数百万ドル規模に上ると試算されています。

位置情報サービスのFoursquare社でも同様の成果が見られます。データ処理基盤であるApache Sparkのジョブ失敗原因の特定にかかる時間を90%削減することに成功。これにより、年間27万5,000ドル以上のコスト削減を実現しています。エンジニアは障害対応から解放され、より付加価値の高い業務に集中できるようになりました。

創業チームは、DatabricksやThoughtSpotといったデータ基盤のトップ企業出身者で構成され、技術的な信頼性は折り紙付きです。同社は今後、障害発生後の対応だけでなく、問題発生を予測する予防的な機能の開発も進める計画です。AIがコードを生成し、そのコードが引き起こす問題を別のAIが解決するという、新たなソフトウェア開発サイクルが始まろうとしています。

ChatGPT活用で急成長、Neuro社の全方位戦略

少数精鋭を支える第二の脳

法務費用を数万ドル削減
契約書案の作成とストレステスト
複雑な財務問題をAIで分析

データに基づく事業推進

顧客レビュー分析で商品開発を加速
各SNS広告の効果を即座に特定

マーケティングと営業の革新

SNSでの成功を実店舗売上に直結
顧客に響くブランドメッセージ作成
インフルエンサー向け企画を提案

機能性ガム・ミントを販売するNeuro社が、ChatGPT Businessを全社的に導入し、全米の小売市場で急成長を遂げています。従業員70人未満で9桁(数億ドル)規模の売上を達成する同社は、法務からマーケティング、財務に至るまでAIを活用。少数精鋭で大手と渡り合うための「てこ」として、生産性と競争力を劇的に高めています。

特にコスト削減と業務効率化の効果は顕著です。例えば、契約書案の作成や修正、ストレステストをChatGPTで行い、弁護士にレビューを依頼する体制に移行。これにより、法務費用を数万ドル削減し、数週間に及ぶやり取りを短縮しました。専門家がいない領域でもChatGPTが「第二の脳」として機能し、従業員の多能工化を支えています。

マーケティングと商品開発もAIで加速させています。顧客レビューやSNSの投稿を大規模に分析し、「フルーツ味が欲しい」といったニーズを迅速に特定。これが新フレーバー開発に繋がり、ヒット商品を生み出しました。さらに、AmazonTikTokなど複数媒体の広告レポートを分析させ、投資対効果の高い広告クリエイターを瞬時に見抜いています。

AIによるデータ分析は、営業の現場でも大きな成果を上げています。TikTokでのバイラルヒットが、実店舗での売上に直結していることをデータで証明。これにより、大手薬局チェーンCVSの全米店舗で優良な棚を確保することに成功しました。ブランドメッセージも、AIの助けを借りて専門用語から脱却し、多様な顧客層に響く言葉へと磨き上げています。

経営判断に関わる複雑な分析にも活用が広がっています。資本政策表のモデリングや投資家契約の構築といった財務上の難問に対し、ChatGPTのディープリサーチ機能を使用。共同創業者のChen氏は「自分が思いもよらなかった視点まで提供してくれる」と評価しており、自身の生産性が50%以上向上したと語ります。

Neuro社の成功は、AIを単なるツールではなく、企業文化の一部として取り入れた好例と言えるでしょう。「リソースを最大限に活用する」という同社のDNAとChatGPTが融合し、リーンな組織体制を維持したまま事業を拡大する原動力となっています。

AI分析WisdomAI、Nvidia出資受け5千万ドル調達

急成長のAIデータ分析

シリーズAで5000万ドルを調達
リードはクライナー・パーキンス
NvidiaVC部門も新たに参加
法人顧客は2社から40社へ急増

幻覚を生まない独自技術

LLMをクエリ生成にのみ使用
回答のハルシネーションを回避
未整理データも自然言語で分析
リアルタイム通知エージェントも搭載

AIデータ分析を手がける米スタートアップのWisdomAIが11月12日、シリーズAラウンドで5000万ドル(約75億円)の資金調達を発表しました。このラウンドは名門ベンチャーキャピタルのクライナー・パーキンスが主導し、半導体大手Nvidiaベンチャーキャピタル部門も参加。LLMの「幻覚」を回避する独自技術を武器に、急成長を遂げています。

同社の最大の特徴は、大規模言語モデル(LLM)が誤った情報を生成するハルシネーション」問題への巧みな対策です。WisdomAIでは、LLMを回答の生成ではなく、データを取り出すための「クエリ作成」にのみ使用。これにより、もしLLMが幻覚を起こしても、効果のないクエリが書かれるだけで、誤った回答がユーザーに提示されることはありません

事業は驚異的なスピードで拡大しています。2024年後半の正式ローンチからわずかな期間で、法人顧客は2社から約40社へと急増。シスコやコノコフィリップスといった大手企業も名を連ねます。ある顧客企業では、当初10席だったライセンスが、社内のほぼ全員にあたる450席まで拡大するなど、導入後の利用拡大も著しいです。

最近では、監視対象のデータに重要な変化があった際にリアルタイムでユーザーに通知するエージェント機能も追加されました。これにより、従来の静的なレポートではなく、ビジネス状況の変化を動的かつ能動的に捉えることが可能になります。CEOは「分析をプロアクティブなものに変える」と語ります。

WisdomAIを率いるのは、データセキュリティ企業Rubrikの共同創業者であるソーハム・マズムダー氏。他の共同創業者も同社出身者で構成されており、エンタープライズ向けデータ管理に関する深い知見が同社の強みの源泉となっています。今回の調達資金で、さらなる事業拡大を加速させる構えです。

OpenAI、NYTの2千万件会話記録開示に反発

NYTの開示要求

著作権訴訟で2千万件の会話を要求
ペイウォール回避の証拠探しが目的
裁判所が一度は開示を命令

OpenAIの主張

ユーザープライバシーの重大な侵害
訴訟と無関係な個人情報も対象に
代替案を提示するもNYTは拒否

ビジネスへの影響

法人向けプランは対象外
今後のAIデータ係争の試金石に

AI開発企業のOpenAIが、米大手新聞社ニューヨーク・タイムズ(NYT)による2000万件のChatGPTユーザー会話記録の開示要求に対し、ユーザーのプライバシーを侵害するとして強く反発しています。著作権侵害を巡る訴訟の一環として行われたこの要求は、AI時代におけるデータプライバシーのあり方を問う重要な事例として注目されています。

NYTの主張の核心は、著作権で保護された自社コンテンツが、ChatGPTによってどのように利用されているかを検証する必要があるという点です。特に、ユーザーが有料記事の閲覧を回避(ペイウォール回避)するためにAIを利用している実態を把握するため、「実世界の」会話データへのアクセスが不可欠だと訴えています。

これに対しOpenAIは、要求されたデータには訴訟とは全く無関係な、極めて個人的で機微な情報が多数含まれると指摘。「ユーザーのプライベートな会話はユーザー自身のもの」との立場を明確にし、この要求は行き過ぎたプライバシー侵害であると批判しています。同社はこれまでもNYT側の要求を一部退けてきた経緯があります。

OpenAIプライバシー保護を強化する動きを加速させています。具体的には、OpenAI自身でさえも会話内容を閲覧できなくするクライアントサイド暗号化などの新機能開発を進めていると公表。また、今回も対象を絞った検索など、プライバシーに配慮した代替案をNYTに提示しましたが、拒否されたとしています。

ビジネスユーザーにとって重要なのは、今回の開示要求の対象範囲です。OpenAIによると、影響を受ける可能性があるのは2022年12月から2024年11月までの一般消費者向けChatGPTの会話データのみです。Enterprise、Edu、Business(旧Team)、APIの各プランを利用する法人顧客は対象外であると明言しています。

この法廷闘争は、AI企業がユーザーデータをどこまで保護する責任を負うのか、そして司法がどこまでの情報開示を命じることができるのか、という今後のAI業界のルール作りにおける重要な試金石となるでしょう。AIを事業に活用するすべての企業にとって、その動向から目が離せません。

AIの無断学習に司法の「待った」 ドイツでOpenAI敗訴

独裁判所の画期的判決

ChatGPTの学習が著作権侵害と認定
音楽作品の無許諾利用を違法と判断
欧州における初のAI関連司法判断

GEMAとOpenAIの主張

GEMAは「クリエイターの生活保護」を主張
OpenAIは判決に不服、次の対応を検討
損害賠償額は非公開

クリエイター保護の潮流

世界で相次ぐ同様の訴訟
AIと著作権法的枠組みが焦点に

ドイツの裁判所は2025年11月12日、米OpenAIが対話型AI「ChatGPT」の学習に際し、許諾なく音楽作品を使用したことが著作権法に違反するとの判決を下しました。音楽著作権管理団体GEMAが起こした訴訟で、裁判所はOpenAIに損害賠償の支払いを命令。この判決は、欧州におけるAIの著作権問題に関する初の画期的な司法判断として注目されています。

今回の訴訟は、ドイツ音楽著作権管理団体GEMAが昨年11月に提訴したものです。GEMAは、AIモデルが著作権で保護された作品を学習データとして利用する際には、クリエイターへの適切な対価が必要だと主張。GEMAのトビアス・ホルツミュラーCEOは「音楽制作者の生活を守ることに成功した」と述べ、著作者の権利を保護する判例を確立したと評価しました。

一方、OpenAI側はこの判決に同意せず、「次のステップを検討している」とコメントし、不服の意向を示しています。裁判所が命じた損害賠償の具体的な金額は明らかにされていません。AI開発の最前線を走る企業と、コンテンツ制作者の権利保護を求める団体との間で、見解の相違が浮き彫りになりました。

この判決は、生成AIの学習データと著作権をめぐる法的な議論において、欧州で初めて明確な基準を示した点で極めて重要です。これまでグレーゾーンとされてきたAIの学習プロセスに対し、司法が「待った」をかけた形となり、今後のAI開発企業は学習データの適法性について、より一層の注意を払う必要に迫られるでしょう。

OpenAIドイツだけでなく、世界中のクリエイターやメディアグループから同様の訴訟を起こされています。日本でもスタジオジブリなどが学習データへの利用停止を求めるなど、AIと著作権の問題は世界的な課題となっています。今回のドイツでの判決が、他国の司法判断に与える影響も注視されます。

AI開発は1日単位へ、OpenAI幹部が示す未来

加速する開発サイクル

従来の2週間スプリントから1日単位
エンジニアリングチーム構成の見直しが必須
AIネイティブ企業のARR2億ドル達成

特定分野へのモデル最適化

ヘルスケアや金融でのモデルカスタマイズ
かつては困難だった垂直分野への進出

AIの次なるフロンティア

企業へのAI統合は未だ途上
長期的な自律タスクが次の目標

OpenAIスタートアップ責任者マーク・マナラ氏は、イベント「TechCrunch Disrupt 2025」で、AIスタートアップの現状について語りました。同氏によると、AIネイティブ企業は開発サイクルを従来の2週間から1日単位へと劇的に短縮し、年間経常収益(ARR)で2億ドルに達する企業も出現。AIが単なる実験段階を終え、ビジネス成長の中核を担う時代に入ったことを示唆しました。

最も注目すべき変化は、開発サイクルの高速化です。従来のソフトウェア開発で常識だった2週間のスプリントは過去のものとなり、AIネイティブ企業ではわずか1日で製品の改善サイクルを回しています。このスピード感は、企業のエンジニアリングチームのあり方や、市場投入戦略に根本的な見直しを迫るものと言えるでしょう。

AIの応用範囲も急速に拡大しています。スタートアップは汎用モデルを基に、ヘルスケアや金融といった専門分野に特化したカスタマイズを進めています。これにより、かつては参入障壁が高いと考えられていたニッチな市場でも、AIを活用した革新的なサービスが次々と生まれています。あらゆる業界で新たなビジネスチャンスが生まれる可能性を示唆します。

一方でマナラ氏は、AIがまだ企業に完全には統合されていないという課題も指摘しました。特に、人間が介在せず、長期的な視野で自律的にタスクを遂行する能力は、今後のAIモデルとスタートアップ双方にとっての「次なるフロンティア」です。この領域の進化が、次の大きなビジネス変革の鍵を握ることになりそうです。

マナラ氏の発言は、AIがもはや実験的な技術ではなく、ビジネスの成長を直接的に牽引するエンジンであることを明確に示しています。経営者やリーダーは、この高速な開発サイクルモデルのカスタマイズという潮流をどう自社の戦略に取り入れるべきでしょうか。今、その決断が企業の未来を左右するでしょう。

AI社員だけの会社、幻覚と暴走で経営は困難

AI社員のリアルな課題

事実無根の進捗報告(ハルシネーション
指示がなければ完全な無活動
一度始めるとタスクが暴走
人間のような自律的な判断は困難

限定的なタスクでの活用法

発言回数制限付きのブレスト会議
指示が明確なプログラミング業務
虚構を語る能力を活かしたポッドキャスト
人間の適切な監督と制御が必須

米WIRED誌の記者が、従業員が全員自律型AIエージェントという異色のスタートアップ「HurumoAI」を設立・経営する実験を行いました。しかし、AI社員たちは存在しない進捗を報告する「ハルシネーション」や、指示を過剰に実行する「暴走」を頻発。この試みから、AIのみでの企業運営の現実的な課題と可能性が浮き彫りになりました。

この実験の背景には、OpenAIサム・アルトマンCEOらが提唱する「一人ユニコーン企業」構想があります。AIエージェントが人間の従業員に取って代わる未来は本当に訪れるのか。その可能性を確かめるため、記者は自ら創業者となり、CEOやCTO、営業担当まで全ての役職をAIに任せる挑戦に乗り出しました。

経営で最大の壁となったのが、AIのハルシネーション(幻覚)」です。CTO役のAIは、存在しない開発チームや未完了のユーザーテストの進捗を自信満々に報告。事実確認を求めると謝罪するものの、虚偽報告は繰り返され、プロジェクト管理は困難を極めました。

AI社員の行動は両極端でした。普段は指示がなければ何もしませんが、一度トリガーを与えると制御不能に陥ることも。創業者が冗談で提案したオフサイト会議の計画をAIたちが暴走させ、システムのクレジットを全て使い果たしてしまったのです。

一方で、AIが強みを発揮した場面もあります。特に、発言回数を制限したブレーンストーミングでは人間以上に生産的な議論が実現。また、具体的な指示に基づくプログラミングでは、3ヶ月で製品プロトタイプを開発するなど、特定タスクでの高い能力が示されました。

この実験は、AIのみでの企業運営がまだ現実的でないことを示唆します。しかし、課題を理解し、人間の監督下で得意なタスクに集中させれば、強力なツールとなり得ます。AIを「部下」としてどう使いこなすか、経営者の手腕が問われる時代の到来です。

MS、長尺動画をAIで分析する新エージェント公開

新AI「MMCTAgent」とは

長尺動画や大量画像を分析
プランナーと批評家の2役推論
MicrosoftAutoGenが基盤
反復的な思考で精度を向上

高性能を支える仕組み

専門ツールを持つエージェント
動画画像を構造化しDB化
Azure AI Searchで高速検索
既存LLMの性能を大幅に改善

Microsoft Researchは2025年11月12日、長尺動画や大規模な画像コレクションに対する複雑なマルチモーダル推論を可能にする新しいマルチエージェントシステム『MMCTAgent』を発表しました。この技術は、これまで困難だった大量の映像データからのインサイト抽出を自動化し、企業のデータ活用戦略を大きく前進させる可能性を秘めています。

MMCTAgentの最大の特徴は、『プランナー』と『批評家』という2つのエージェントが協調して動作するアーキテクチャです。プランナーがユーザーの要求をタスクに分解し、計画を立てて実行。その結果を批評家が多角的にレビューし、事実との整合性を検証して回答を修正します。この人間のような反復的な思考プロセスにより、高い精度と信頼性を実現しています。

このシステムは、Microsoftのオープンソース・マルチエージェントフレームワーク『AutoGen』を基盤に構築されています。動画分析用の『VideoAgent』や画像分析用の『ImageAgent』が、物体検出やOCRといった専門ツールを駆使して情報を処理。抽出されたデータはAzure AI Searchによってインデックス化され、高速な検索と分析を可能にしています。

性能評価では、既存のAIモデルを大幅に上回る結果を示しました。例えば、マルチモーダル評価ベンチマーク『MM-Vet』において、GPT-4Vと組み合わせることで精度が60.2%から74.2%へと大幅に向上。これは、MMCTAgentがベースモデルの能力を補完し、より高度な推論を可能にすることを証明しています。

MMCTAgentはモジュール式の設計を採用しており、開発者医療画像分析や工業製品検査といったドメイン固有のツールを簡単に追加できます。これにより、様々な産業への応用が期待されます。Microsoftは今後、農業分野での評価を皮切りに、さらに多くの実社会での活用を目指すとしています。

監視カメラの映像分析や製品の品質管理、メディアコンテンツのアーカイブ検索など、企業が保有する膨大な映像データは「未開拓の資産」です。MMCTAgentは、この資産からビジネス価値を生み出すための強力なツールとなるでしょう。経営者エンジニアは、この新しいエージェント技術が自社の競争力をいかに高めるか、注視すべきです。

World Labs、編集可能な3D世界生成AI「Marble」公開

3D世界を自在に生成

テキストや画像から3D環境を自動生成
永続的でダウンロード可能な高品質な世界
ゲーム・VFX・VRでの活用に期待

直感的なAIネイティブ編集

構造とスタイルを分離した柔軟な編集
AI編集ツール「Chisel」を搭載
生成した世界の拡張・合成も可能

空間知能への第一歩

AIの権威フェイフェイ・リ氏が主導
フリーミアム含む4プランで提供

AI研究の権威フェイフェイ・リ氏が率いるスタートアップWorld Labsは、初の商用製品であるワールドモデル「Marble」を正式に発表しました。テキスト、画像動画などから編集・ダウンロード可能な3D環境を生成するサービスで、ゲームやVFX業界のコンテンツ制作を革新する可能性を秘めています。フリーミアムモデルで提供を開始し、ワールドモデル開発競争で一歩リードする形です。

Marbleの最大の特徴は、一貫性が高く永続的でダウンロード可能な3D環境を生成する点にあります。リアルタイムで世界を生成し続ける他のモデルとは異なり、高品質なアセットとして出力できるのです。ガウシアン・スプラッティングやメッシュ形式でのエクスポートに対応し、UnityやUnreal Engineといった既存のゲームエンジンに直接組み込めます。

さらに、独自のAIネイティブ編集ツールクリエイターに高度な制御をもたらします。実験的な3Dエディタ「Chisel」を使えば、まず大まかな空間構造をブロックで組み、その後AIに詳細なビジュアルを生成させることが可能です。これにより、ウェブサイトにおけるHTMLとCSSのように、構造とデザインを分離して効率的に編集できます。

ユーザーは生成した世界を拡張したり、複数の世界を合成したりすることも可能です。これにより、広大な空間の作成や、異なるスタイルの世界を組み合わせるなど、創造性の幅が大きく広がります。このような柔軟な編集機能は、クリエイターがAIに主導権を奪われることなく、創造性を最大限に発揮できるよう設計されています。

Marbleはフリーミアムを含む4つの料金プランで提供されます。ゲーム開発や映像制作での背景アセット生成が当面の主な用途と見られています。また、VR業界もコンテンツ不足から大きな期待を寄せており、Vision ProやQuest 3にも既に対応済みです。クリエイターにとって、制作パイプラインを加速させる強力なツールとなるのではないでしょうか。

World Labsの創業者であるリ氏は、Marbleを単なる3D生成ツールではなく、「空間知能」を持つAIへの重要な一歩と位置付けています。将来的には、ロボット工学のシミュレーション環境や、科学・医療分野でのブレークスルーにも貢献する可能性があると期待を示しており、その動向から目が離せません。

Geminiが表現力を獲得、自然な会話でスキル向上へ

より人間らしくなった対話機能

声の抑揚やリズムの理解
話す速度のリアルタイム調整
多様なキャラクターやアクセント

実践的なスキル習得を支援

外国語の特定分野を練習
面接や交渉のロールプレイ
登場人物になりきる物語解説
専門分野のパーソナル学習

Googleは11月12日、対話型AI「Gemini」の音声対話機能「Gemini Live」を大幅にアップデートしたと発表しました。今回の更新で、人間の話し方が持つ声の抑揚やリズム、トーンといったニュアンスを理解・再現する能力が飛躍的に向上。これにより、ユーザーはより自然で直感的な会話を通じて、学習やスキルアップにAIを役立てることが可能になります。

新しいGemini Liveは、単なる言葉のやり取りを超えたコミュニケーションを実現します。会話の文脈に応じて声のトーンを変化させたり、ユーザーの指示で話す速度を「速く」「ゆっくり」とリアルタイムで調整したりすることが可能です。まるで人間と話しているかのような自然さが、今回のアップデートの最大の特長と言えるでしょう。

この進化は、特に学習分野で大きな力を発揮します。例えば、ビジネス分析のような複雑なテーマについて、通勤中に早口で解説を求める、といった使い方ができます。ユーザーが自身のペースや理解度に合わせて学習環境を完全にコントロールできるようになるため、生産性の向上が期待されます。

語学学習や重要なプレゼンテーションの準備にも最適です。「スペイン語で挨拶を練習したい」「次の面接の模擬練習をしてほしい」といった要望に応え、Gemini実践的な練習相手となります。失敗を恐れることなくスキルを磨ける、安全なトレーニング環境を提供します。

さらに、物語の登場人物になりきって解説させたり、カウボーイ訛りでレシピを読み上げさせたりと、エンターテイメント性も向上しました。これにより、学習や情報収集がより没入感のある体験に変わります。AIとの対話が、単なる作業から楽しみへと進化する可能性を秘めています。

今回のアップデートは、AIとの対話をより直感的で効果的なものにするための重要な一歩です。AndroidおよびiOSGeminiアプリで利用可能となっており、ビジネスパーソンが自身の市場価値を高めるための新しいツールとして、早速試してみてはいかがでしょうか。

AnthropicのAI、ロボット犬の遠隔操作に成功

AIによるロボット制御実験

AI「Claude」によるロボット犬の制御
ロボティクス未経験者によるプログラミング
Claude利用群と非利用群で能力を比較

実験で判明したこと

Claude利用群がタスクを高速化
非利用群には達成不能なタスクも成功
チームの共同作業にも好影響

今後の展望とリスク

AIの物理世界への進出が加速
AIの自律的な身体化リスクへの備え

AI開発企業Anthropic社は、同社のAIモデル「Claude」がロボット犬のプログラミングと物理的なタスク実行を自動化できることを示す研究「Project Fetch」の結果を発表しました。この実験は、AIがデジタル空間だけでなく、物理世界へ影響を及ぼす「エージェント」としての能力を証明するものです。生産性向上の可能性を示す一方、将来的なリスクへの備えの重要性も浮き彫りにしています。

実験では、ロボティクスの専門知識がない2つの研究者チームが、中国Unitree社製の四足歩行ロボット「Go2」の操作に挑みました。片方のチームのみがClaudeの支援を受け、もう一方はAIなしでプログラミングを行いました。その結果、Claudeを利用したチームは、AIなしのチームが達成できなかった「ビーチボールを見つける」といった複雑なタスクを成功させ、作業をより迅速に完了させました。

今回の研究で注目すべきは、生産性以外の効果です。Anthropic社の分析によると、Claudeを利用したチームは、AIの支援なしで作業したチームに比べて、混乱や否定的な感情が少なく、より円滑に協力できていたことが判明しました。これは、Claudeロボットとの接続やインターフェースのコーディングを簡略化し、人間がより本質的な課題に集中できたためと考えられます。

Anthropic社は、AIの潜在的な危険性を研究し、安全な開発を推進することを目的に設立された企業です。今回の実験も、将来AIが自律的に物理システムを操作する「自己身体化」の可能性に備えるという、リスク研究の一環です。現行モデルがロボットを完全に制御する能力はありませんが、将来の高性能モデルがもたらす変化に先手を打つ狙いがあります。

専門家は、AIがロボットを操作する能力自体は驚くべきことではないとしながらも、AI支援がチームの力学に与える影響についての分析は注目に値すると評価しています。同時に、AIによるロボット制御は悪用や予期せぬ事故のリスクもはらみます。そのため、AIの行動に特定のルールを課す「RoboGuard」のような安全システムの開発も重要性を増しています。

AIがウェブ上の操作だけでなく、物理的な行動を起こすエージェントへと進化する未来は、すぐそこまで来ています。製造、建設、警備など、様々な産業でロボットの活用が進む中、AIによる自律制御は革命的な生産性向上をもたらすでしょう。しかし、その力をいかに安全に活用するか。経営者エンジニアにとって、この問いへの備えがこれまで以上に求められます。

AIの電力危機、超電導ケーブルが救世主か

AIデータセンター電力問題

ラックあたり消費電力メガワット級
従来の銅線では発熱とスペースが限界

Veirの超電導ケーブル

液体窒素で-196℃に冷却し電力損失ゼロ
銅線の20分の1のスペースで設置可能
送電距離は銅線の5倍を実現

実用化に向けた動き

Microsoftが出資する注目企業
2026年にパイロット運用開始
2027年の商用化を目指す

Microsoftが出資する米スタートアップVeirが、AIデータセンターの爆発的な電力需要に対応するため、超電導ケーブルを開発しています。従来の銅線では対応困難なメガワット級の電力を、省スペースかつ高効率で供給する新技術です。2027年の商用化を目指し、来年には実際のデータセンターで試験運用を開始する計画で、AIインフラの次世代標準となるか注目が集まります。

AIの進化でデータセンター電力消費は急増しています。ラックあたりの需要は数十kWから200kWに達し、将来は数メガワットに及ぶとされます。このままでは、電力ケーブルがスペースを圧迫し、発熱処理も追いつかなくなるという深刻な課題に直面しています。

Veirの解決策が超電導ケーブルです。液体窒素で-196℃に冷却した素材で電力損失をゼロにします。従来の銅線と比較し、20分の1のスペースで済み、電力供給距離は5倍に延びるといいます。データセンターの設計自由度を飛躍的に高める可能性を秘めています。

同社は元々、電力会社の送電網向けに技術開発を進めていました。しかし、変化の速いデータセンター業界からの強い要望で事業の軸足を転換。課題が切迫するAI市場こそ、新技術導入の好機だと判断したのです。市場ニーズを的確に捉えた戦略と言えるでしょう。

Veirはすでに模擬施設で技術実証を完了。来年にはデータセンターでのパイロット運用を開始し、2027年の本格的な商用化を目指します。この技術が普及すれば、AI性能を最大限に引き出す電力インフラのボトルネックが解消されるかもしれません。

AI音声ElevenLabs、有名人の声を公式に商品化

公認AI音声マーケットプレイス

ブランドが有名人のAI音声を利用可能
マイケル・ケインら大物俳優が参加
肖像権を保護した新たな収益源

ハリウッドとの新たな関係

AIへの警戒から協業モデルへ転換
俳優自身がAI活用の主導権を確保
投資家でもある俳優マコノヒー氏
ニュースレターをAI音声で多言語化

AI音声技術のスタートアップElevenLabsは今週、俳優マイケル・ケイン氏らと提携し、有名人の声をAIで生成する公認マーケットプレイスを立ち上げました。ブランドは公式に許諾された有名人のAI音声コンテンツ制作に利用可能になります。これはアーティストの新たな収益源となり、AIとエンタメ業界の協業モデルを提示する動きです。

新設されたマーケットプレイスには、アカデミー賞俳優のマイケル・ケイン氏やライザ・ミネリ氏、故マヤ・アンジェロウ博士など、象徴的な人物の声が名を連ねています。ブランドはこれらの声を活用することで、キャンペーンに唯一無二の魅力と信頼性を付与できると期待されています。

この動きは、AIに対するハリウッドの姿勢の変化を象徴しています。数年前の俳優ストライキでは、無断でのAI利用が大きな争点となりました。しかし現在では、アーティスト自身が自らのデジタル肖像権を管理し、AIを新たな表現と収益化のツールとして積極的に活用する流れが生まれつつあります。

今回の提携には、ElevenLabsの投資家でもある俳優マシュー・マコノヒー氏も参加しています。具体的な活用例として、同氏は自身のニュースレターを自らのAI音声でスペイン語に翻訳し、音声コンテンツとして配信する計画です。これにより、言語の壁を越えてファンとのエンゲージメントを深めることが可能になります。

Andreessen Horowitz (a16z) など有力な投資家から支援を受けるユニコーン企業ElevenLabs。今回のマーケットプレイス創設は、同社の技術力と事業展開力を示すものです。エンターテインメント業界におけるAI活用倫理的な枠組みと商業モデルをリードする存在として、今後の動向が注目されます。

PC内データ検索が激変、NVIDIA RTXで3倍速

ローカルAIが全データを解析

PC内の全ファイルを横断検索
キーワードではなく文脈で理解
プライバシーを守る端末内処理
機密情報をクラウドに送らない

RTXで実現する圧倒的性能

インデックス作成速度が3倍に向上
LLMの応答速度は2倍に高速化
1GBのフォルダが約5分で完了
会議準備やレポート分析に活用

Nexa.ai社は2025年11月12日、ローカルAIエージェント「Hyperlink」の新バージョンを発表しました。このアプリは、NVIDIAのRTX AI PCに最適化されており、PC内に保存された膨大なファイル群から、利用者の意図を汲み取って情報を検索・要約します。今回の高速化により、ファイルのインデックス作成速度は3倍に、大規模言語モデル(LLM)の応答速度は2倍に向上。機密情報をクラウドに上げることなく、AIによる生産性向上を享受できる点が特徴です。

多くのAIアシスタントは、文脈として与えられた少数のファイルしか参照できません。しかし、HyperlinkはPC内のスライド、メモ、PDF、画像など、数千ものファイルを横断的に検索できます。単なるキーワード検索ではなく、利用者が「SF小説2作のテーマ比較レポート」を求めた場合でも、ファイル名が異なっていても内容を理解し、関連情報を見つけ出すことが可能です。

今回のバージョンアップの核となるのが、NVIDIA RTX AI PCによる高速化です。これまで約15分かかっていた1GBのフォルダのインデックス作成が、わずか4〜5分で完了します。これは従来の3倍の速さです。さらに、LLMの推論処理も2倍に高速化され、ユーザーの問い合わせに対して、より迅速な応答が実現しました。

ビジネスシーンでAIを利用する際の大きな懸念は、情報漏洩リスクではないでしょうか。Hyperlinkは、全てのデータをユーザーのデバイス内で処理します。個人のファイルや企業の機密情報がクラウドに送信されることは一切ありません。これにより、ユーザーはプライバシーセキュリティを心配することなく、AIの強力な分析能力を活用できます。

Hyperlinkは既に、専門家学生クリエイターなど幅広い層で活用されています。例えば、会議前に議事録を要約したり、複数の業界レポートから重要なデータを引用して分析したりすることが可能です。エンジニアにとっては、コード内のドキュメントやコメントを横断検索し、デバッグ作業を高速化するツールとしても期待されます。

AIブームが促すチップ接続革命、光技術が主役に

AIが求める超高速通信

チップ間通信の高速化が急務
従来の電子技術では限界

注目される光技術フォトニクス

AIブームで再評価される光技術
光でチップを繋ぐ新アプローチ

大手と新興企業の開発競争

Nvidiaなど大手が先行投資
Lightmatterなど新興企業も台頭
高コストなど実用化への課題

AIブームがデータセンターの性能向上を強く求めています。これに応えるため、半導体メーカー各社はチップ間を繋ぐネットワーキング技術の革新を急いでいます。特に、従来の電子技術の限界を超える解決策として、光を利用する「フォトニクス」が大きな注目を集めており、大手からスタートアップまで開発競争が激化しています。

なぜ今、ネットワーキング技術が重要なのでしょうか。AIが処理するデータ量は爆発的に増加しており、チップ単体の性能向上だけでは追いつきません。チップ同士をいかに高速かつ効率的に接続するかが、システム全体の性能を左右するボトルネックとなっているためです。

GPU大手のNvidiaは、数年前にネットワーキング企業Mellanoxを買収し、GPUクラスタの性能を飛躍的に高めました。BroadcomやARMといった他の半導体大手も、カスタムチップ開発や関連企業の買収を通じて、この重要分野への投資を強化しています。

大手だけでなく、革新的なスタートアップも登場しています。Lightmatter社やCelestial AI社は、光インターコネクト技術で巨額の資金調達に成功。従来の技術では不可能なレベルのデータ転送速度を目指し、次世代コンピューティングの主導権を狙っています。

一方で、フォトニクス技術には課題も残ります。製造コストの高さや、既存の電気システムとの互換性の確保など、実用化に向けたハードルは低くありません。専門家は「フォトニクスの未来は来るが、まだ少し先」と見ており、今後の技術開発の動向が注目されます。

@koziiiのXポスト: コヒレントの安定とルメンタムの俊敏さ。その違いが、2025年のAI光通信競争の趨勢を左右することになる。続きはnoteを読んで。 ・コヒレント買収合戦「敗北」という最大の幸運 ・なぜルメンタムの速度はコヒレントを圧倒するのか? ・NVIDIA CPOエコシステムが示す不可欠性…

Google、巨大詐欺組織を提訴し法制化も支援

法的措置でインフラを解体

巨大詐欺組織Lighthouseを提訴
サービスとしてのフィッシング(PhaaS)を提供
世界120カ国以上で100万人超が被害
米国だけで最大1億枚超のカード情報流出

政策提言で防御網を強化

米議会の超党派法案を支持
高齢者保護や海外ロボコール対策を推進
AI活用詐欺メッセージを自動検知
法廷と議会の二正面作戦で詐欺に対抗

Googleは2025年11月12日、世界的に拡大するフィッシング詐欺に対抗するため、大規模詐欺組織に対する法的措置と、新たな詐欺対策法案の支持という二正面作戦を発表しました。巧妙化する「スミッシング」などの手口で金銭的被害が急増する中、技術、法務、政策の三位一体でユーザー保護を強化する構えです。これは企業のサイバーセキュリティ戦略の新たな指針となるでしょうか。

今回の訴訟は、「Lighthouse」と呼ばれる「サービスとしてのフィッシング(PhaaS)」事業者の解体を目的としています。この組織は、荷物の不在通知や道路料金の未払いを装ったSMS(スミッシング)を大量に送りつけ、偽サイトへ誘導し金融情報を詐取。その被害は世界120カ国以上で100万人超に及びます。

LighthouseはGoogleブランドを不正に利用した偽サイトを100以上作成し、ユーザーを欺いていました。米国だけで最大1億枚超のカード情報が盗まれた可能性も指摘されています。GoogleRICO法(組織犯罪処罰法)などを適用し、犯罪インフラの無力化を目指します。

法廷での戦いに加え、Googleはより広範な脅威に対処するため、米議会での政策作りも後押しします。個別の犯罪組織を潰すだけでは不十分であり、社会全体で詐欺を防止する仕組みが必要との判断です。超党派で進む複数の重要法案への支持を表明しました。

支持する法案には、高齢者を詐欺から守る「GUARD Act」や、海外からの違法なロボコールを遮断する「Foreign Robocall Elimination Act」などが含まれます。これにより、法執行機関の捜査能力を向上させ、詐欺の入り口となる迷惑電話の削減が期待されます。

GoogleはAIを活用し、典型的な詐欺メッセージを検知する新機能も導入。Googleメッセージ内の悪意あるリンクからの保護や、アカウント復旧機能の拡充も進め、多層的な防御網を構築しています。

法廷闘争から法制度の整備、そしてAIによる技術革新まで。Googleの包括的なアプローチは、サイバー犯罪との戦いが新たな段階に入ったことを示唆しています。企業や個人も、自らのデジタル資産をどう守るか、改めて戦略を見直す時期に来ていると言えるでしょう。

伊大学の半数がGemini導入、100万人の学習変革

イタリアの大学でAI導入加速

高等教育機関半数以上が公式導入
対象学生数は100万人を突破
エンタープライズ級のデータ保護

個別学習とスキル向上を支援

AI家庭教師「Guided Learning」機能
GoogleによるAIスキル研修も提供
最新AIモデルを無料で提供

多様な大学での活用事例

遺伝子データから臨床シナリオを生成
失読症学生学習支援に活用
大量文書の照会など事務作業も効率化

Googleの教育向けAI「Gemini for Education」が、イタリアの高等教育機関で急速に普及しています。全機関の半数以上が公式に導入を決定し、その対象となる学生は100万人を超えました。これにより学生や教職員は、パーソナライズされた学習支援やエンタープライズレベルのデータ保護を備えた、世界最先端のAIモデルを無料で利用できるようになります。

Gemini for Education」の大きな特徴は、単に答えを提示するのではなく、学生の深い理解を促すAI家庭教師のような機能「Guided Learning」です。これにより、一人ひとりに最適化された学習体験が可能になります。また、Googleは堅牢なデータ保護を提供しており、教育現場でも安心してAI技術を活用できる環境を整えています。

Googleはツールの提供にとどまらず、AIリテラシーの向上にも力を入れています。「Google Career Certificates」や「Gemini Academy」といった無料のオンライン研修を通じて、次世代を担う学生教員がAIを使いこなすための必須スキルを習得する機会を提供しています。これは、技術の導入と人材育成を両輪で進める戦略と言えるでしょう。

具体的な活用事例も報告されています。パヴィア大学では、Gemini APIをバイオインフォマティクス基盤に統合し、模擬遺伝子データから詳細な臨床シナリオを生成学生はデータ分析の臨床的背景を深く理解できるようになりました。これにより、技術的スキルと臨床的文脈の間の溝を埋めることに成功しています。

カッシーノ大学では、既存のGoogleサービスとの親和性の高さを活かし、スムーズな導入を実現しました。特に、AIアシスタントNotebookLM」は、失読症の学生視覚的なマインドマップを作成するのを助け、理解を深めるのに役立っています。さらに、大量の文書から必要な情報を迅速に検索するなど、事務作業の効率化にも貢献しています。

この変革の波は、まだ始まったばかりです。Googleは、認定されたすべての高等教育機関に対し、「Gemini for Education」を無料で提供しており、これには同社の最も高性能なAIモデル「Gemini 2.5 Pro」へのアクセスも含まれます。教育現場におけるAI活用は、学習効果の向上と運営効率化の両面で、今後さらに大きな可能性を秘めているのではないでしょうか。

Google、AI活用で好みの画像を推薦する新タブ

新機能の概要

Googleアプリに新画像」タブ追加
興味に合わせた画像を毎日推薦
米国iOS/Androidで先行提供

進化したユーザー体験

直感的なビジュアル発見を促進
アイデアをコレクションに保存・整理
見つけた画像から関連検索も可能

Googleは2025年11月12日、米国AndroidおよびiOS向けGoogleアプリに、新たに「画像」タブを導入すると発表しました。この新機能は、ユーザーの興味関心に合わせてパーソナライズされた画像を毎日推薦するもので、旅行の計画や部屋の装飾など、言語化が難しいアイデア探しを視覚的に支援し、発見体験を向上させることを目的としています。

新機能へのアクセスは非常にシンプルです。Googleアプリの画面下部に追加された新しい「画像」アイコンをタップするだけで、ユーザーの興味に基づいた画像がフィード形式で表示されます。これにより、ユーザーは能動的に検索せずとも、日々新たなインスピレーションに出会う機会を得られます。

この新タブは、単なる画像閲覧にとどまりません。気に入った画像は自身の「コレクション」に保存して整理したり、その画像を起点として関連画像をさらに検索したりすることが可能です。これにより、アイデアの発想から整理、深掘りまでをアプリ内でシームレスに完結させ、クリエイティブな活動を支援します。

この機能は、まず米国内で今後数週間かけて順次提供が開始されます。Googleは、PinterestやInstagramなどが先行するビジュアル探索の領域で、AIによるパーソナライゼーションを武器に新たなユーザー体験を提供し、競争力を高める狙いがあると考えられます。日本を含む他地域での展開にも注目が集まります。

ビリニュスの魅力、Googleでバーチャル体験可能に

デジタルで巡る古都

80以上のストーリーを公開
2000点超の高解像度写真
20以上のストリートビュー
11のトップミュージアムが協力

ビリニュスの多彩な魅力

ユネスコ世界遺産の旧市街
アートの独立共和国ウジュピス
豊かな自然と歴史ある公園
活気あふれる伝統的な祭り

リトアニアの首都ビリニュス市は、Googleのバルト三国オフィス設立10周年を記念し、オンラインプラットフォーム「Google Arts & Culture」に新たなハブ「Visit Vilnius」を開設しました。市内の主要美術館11館と協力し、世界中の人々がビリニュスの豊かな文化遺産や美しい街並みをバーチャルで体験できるようになったのです。この取り組みは、テクノロジーを活用した都市ブランディングの新たな一手と言えるでしょう。

このデジタルハブでは、80以上のストーリー、2000点以上の高解像度写真、20以上のストリートビューが公開されています。ユーザーは、まるで現地を訪れているかのように、中世の面影を残す街並みから最新のビジネス街までを自由に探索できます。これは、ビリニュス市と11の美術館、そしてGoogleの緊密な連携によって実現した大規模なプロジェクトです。

バーチャル体験の目玉の一つは、多彩な視点からの眺望です。エッフェル塔より高いテレビ塔からのパノラマビュー、世界遺産の旧市街を上空から眺める熱気球の視点など、現実の旅行では難しい体験も可能にします。テクノロジーは、物理的な制約を超えて都市の魅力を伝える強力なツールとなり得ることを示しています。

さらに、芸術家たちが「独立共和国」を宣言したユニークな地区「ウジュピス」の散策や、伝統的な「カジューカス市」の活気を体感することもできます。こうしたローカルでディープな文化体験をデジタルで提供することで、ビリニュスは新たなファン層を獲得し、将来的な観光需要を喚起することを目指しています。

今回の取り組みは、単なる観光情報の発信にとどまりません。貴重な文化遺産をデジタルアーカイブとして保存し、教育や研究にも活用できる可能性を秘めています。テクノロジーを駆使した文化発信と都市ブランディングの先進事例として、多くの経営者やリーダーにとって示唆に富むものではないでしょうか。