ネットワーク(ユースケース)に関するニュース一覧

AIデータ収集の対価請求標準「RSL 1.0」正式公開

コンテンツ使用料のルール化

AI企業に対価を要求する標準仕様
robots.txtを拡張し条件指定

インフラ層での制御と部分拒否

Cloudflare等が未払いAIを遮断
検索表示を維持しAIのみ拒否

1500超の組織が支持を表明

RedditやAP通信などが採用へ
Googleへの対抗手段として注目

AI企業がウェブ上のコンテンツを収集する際、その対価を求めるためのオープンなライセンス標準「RSL 1.0」が正式に仕様化されました。これにより、Webサイト運営者はAIクローラーに対し、ライセンス料の支払いルールを明確に提示できるようになります。

RSLはrobots.txtを拡張する仕組みですが、単なる意思表示にとどまりません。Cloudflare等のインフラ企業が対応し、ライセンス料を支払わないAIスクレイパーをネットワークレベルでブロックする強制力を持たせることが可能です。

特に重要なのは、Google検索などの従来の検索結果には表示させつつ、AIによる学習や生成回答への利用だけを拒否できる点です。現状、Google等はAI利用のみを拒否する選択肢を提供していないため、RSLはその欠如を埋める重要な解決策となります。

すでにRedditやThe Associated Pressなど1500以上の組織が支持を表明しています。EUでGoogleに対する独占禁止法の調査が進む中、コンテンツの権利を守りつつAIと共存するための業界標準として、法的・実務的な重みが増しています。

Google、AIインフラ責任者をCEO直属に昇格 投資加速へ

CEO直属の新ポスト新設

Amin Vahdat氏がチーフテクノロジストに就任
ピチャイCEO直属としてAIインフラを統括
25年末までに最大930億ドルの設備投資を実施

競争力の源泉を担う実績

独自チップTPUや高速回線を主導
Googleインフラ技術を15年間牽引
重要人材の流出防止も狙いの一つ

Googleは、AIインフラストラクチャ担当のチーフテクノロジストという役職を新設し、長年データセンター技術を主導してきたアミン・ヴァーダット(Amin Vahdat)氏を昇格させました。この新ポストはサンダー・ピチャイCEOに直属し、激化するAI開発競争において、インフラ戦略が経営の最優先事項であることを示唆しています。

今回の人事は、Googleが2025年末までに最大930億ドル(約14兆円)という巨額の設備投資を見込む中で行われました。AIモデルのトレーニングや推論に必要な計算能力への需要は、過去8年間で1億倍に増加したとも言われており、Googleハードウェアとソフトウェアの両面でインフラの効率化と拡大を急いでいます。

ヴァーダット氏は、過去15年にわたりGoogleの技術的なバックボーンを構築してきた重要人物です。独自のAIチップであるTPU(Tensor Processing Unit)や、サーバー間を接続する超高速ネットワーク「Jupiter」、データセンター管理システム「Borg」など、Googleの競争優位性を支えるコア技術の開発を主導してきました。

AI分野におけるトップ人材の獲得競争が過熱する中、今回の昇格にはリテンション(引き留め)の側面も強いと考えられます。AIインフラの構築には高度な専門知識と経験が不可欠であり、長年Googleの技術基盤を支えてきたキーマンを経営幹部として処遇することで、組織の安定と技術革新の継続を図る狙いです。

米BTC採掘業者がAIへ転換、高収益データセンターへ

AI特需と収益構造の激変

米大手マイナーが相次いでAIデータセンターへ転換
ビットコイン価格下落と報酬半減が収益を圧迫
AI計算需要に対し電力インフラの価値が急騰

インフラ転用と今後の課題

テック大手との契約で安定収益と高利益率を確保
AI向けには常時稼働と高度な電源管理が必須
採掘能力低下によるセキュリティリスクの懸念
採掘拠点はエネルギーの海外や国家管理へ移行

2025年12月、米国の主要ビットコイン採掘業者(マイナー)たちが、事業の軸足をAIデータセンター運営へと急速に移しています。かつて暗号資産の採掘拠点だった巨大施設は、今やAmazonMicrosoftといったテック企業のAIモデル学習を支える計算基盤へと変貌しつつあります。背景には、マイニング収益の悪化と、AI開発競争による電力インフラ需要の爆発的な増加があります。この構造転換は、エネルギー産業の勢力図と金融システムの双方に新たな潮流を生み出しています。

Riot PlatformsやBitfarmsなど、米国の上場マイニング企業の多くがAIやHPC(高性能計算)分野への参入を表明しました。過去18ヶ月で少なくとも8社が方針転換を行い、総額430億ドル(約6兆円超)規模のAI関連契約が発表されています。AI企業はモデル学習に必要な膨大な電力とスペースに飢えており、マイナーが保有する大規模な電力インフラと「ハコ(データセンターの外郭)」は、即座にGPUを稼働させるための貴重な資産として再評価されています。

転換の最大の動機は明確な経済合理性です。2024年の半減期を経て採掘報酬が減少し、さらに足元でビットコイン価格が8万5000ドル付近まで調整したことで、マイニング事業の採算性は厳しさを増しています。対照的に、AIデータセンター事業は大手テック企業との長期契約により、安定的かつ高い利益率が見込めます。株式市場もこの動きを好感しており、AIへのピボットは株価上昇の強力な触媒として機能しています。

もっとも、このインフラ転用は技術的に容易ではありません。ビットコインマイニングは電力需給に応じて稼働を停止できる柔軟性がありますが、AIの学習処理には「99.999%以上」の稼働率と極めて安定した電力供給が求められます。既存施設の改装には発電機の追加など多額の投資が必要となりますが、テックジャイアントからの旺盛な需要と巨額の契約金が、そのハードルを越える原動力となっています。

この潮流はビットコインネットワーク自体に長期的なリスクをもたらす可能性があります。米国の計算能力(ハッシュレート)がAIへ流出すれば、ネットワークセキュリティ強度が低下しかねないからです。結果として、純粋なマイニング事業はエネルギーコストの安いパラグアイなどの海外地域や、国家安全保障の一環としてビットコインを戦略的に保有・採掘する主権国家の事業へと変質していく可能性があります。

OpenAI、独テレコムと提携し欧州でのAI展開を加速

欧州市場でのAI普及を推進

独テレコムと戦略的パートナーシップ
欧州数百万人に高度なAI機能を提供
2026年より新サービスを開始予定

企業導入とインフラ革新

全社にChatGPT Enterprise導入
顧客対応と業務フローをAIで効率化
ネットワーク運用の自律化・最適化

OpenAIは9日、ドイツテレコムとの提携を発表しました。欧州全域の顧客に対し、高度なAI機能を提供することを目指します。世界的な通信基盤を持つ同社との協力で、AIの普及を加速させます。

両社は、シンプルで多言語に対応したプライバシー重視のAI体験を共同開発します。これらのサービスは2026年から展開され、人々のコミュニケーションや学習を支援するツールとなる予定です。

また、ドイツテレコムは全社的にChatGPT Enterpriseを導入します。従業員に安全なAI環境を提供することで、顧客ケアの向上や業務効率化、イノベーションの創出を推進します。

さらに、ネットワーク運用にもAIを深く統合します。自律的で自己最適化するシステムへの移行を進め、インフラ運用の高度化と従業員支援ツールの強化を図る方針です。

米国防総省、新AI基盤にGoogle Gemini採用

軍事専用AI基盤の始動

国防総省が「GenAI.mil」を発表
GoogleGeminiを初採用
将来は他社モデルも導入予定

用途とセキュリティ対策

文書要約やリスク評価に活用
データは学習に不使用と明言
非機密業務での利用に限定
長官は戦力強化を強調

米国防総省は2025年12月9日、軍独自のAIプラットフォーム「GenAI.mil」を発表し、最初の搭載モデルとしてGoogle CloudのGeminiを採用しました。この取り組みは、最先端の生成AI技術を全米の軍関係者に提供し、組織全体の業務プロセスを抜本的に変革することを目的としています。

具体的な活用シーンとして、Googleポリシーハンドブックの要約、コンプライアンスチェックリストの生成、作業記述書からの重要語句抽出などを挙げています。膨大な文書処理やリスク評価作成といったバックオフィス業務をAIが支援することで、運用計画の効率化が期待されています。

セキュリティに関しては、入力されたデータがGoogleの一般公開モデルの学習に使用されることはなく、取り扱いは非機密情報に限定されます。国防総省のネットワーク外からのアクセスは遮断されており、厳格な情報管理下で運用される仕組みです。

Hegseth国防長官は本プラットフォームにより「戦闘部隊をこれまで以上に致死的にする」と述べ、軍事力強化への強い意欲を示しました。今後はGoogle以外のAIモデルも順次追加される予定であり、国防総省におけるAI活用の急速な拡大が見込まれます。

倉庫の重労働をAIロボで解放、MIT発「Pickle」の挑戦

生成AI搭載の自律ロボ

MIT発、生成AI機械学習を実装
最大50ポンドの荷物を自律的に荷下ろし
導入初日から稼働、学習し性能が向上

現場課題からピボット

倉庫の高離職率に着目し事業転換
既存アーム活用で開発コストを抑制
UPSやリョービなど大手企業が導入

2025年12月、MIT発のスタートアップ「Pickle Robot Company」が物流業界の注目を集めています。同社は生成AIと機械学習を駆使した自律型ロボットにより、物流倉庫における過酷な荷下ろし作業を自動化しました。UPSやRyobi Toolsなどの大手企業で導入が進み、深刻な人手不足と高い離職率という業界の構造的課題の解決に貢献しています。

同社の技術的な強みは、高度なソフトウェアと既存ハードウェアの賢明な融合にあります。独KUKA社製の産業用アームに独自のセンサーやAIを搭載し、最大50ポンド(約23kg)の荷物を処理します。生成AIモデルのファインチューニングにより、多様な環境に即応しつつ、稼働しながら性能を高める仕組みを構築しました。

創業者のAJ Meyer氏らは当初、仕分けロボットを開発していましたが、資金難に直面し方針転換を余儀なくされました。現場観察で「90日以内に全員が辞める」という過酷な荷下ろし現場の実態を知り、事業をピボットします。YouTubeに投稿した概念実証動画が大きな反響を呼び、投資家と顧客を呼び戻して再起を果たしました。

今後は荷下ろしに加え、積み込み作業や他社製ロボットとの連携プラットフォーム開発も視野に入れています。鉱山から玄関先まで、サプライチェーン全体の自動化を指揮する「ネットワークの構築」を目指し、同社は事業拡大を加速させています。

MIT、AI制御で蜂並みの飛行ロボットを開発

AI技術で身体能力が覚醒

速度450%、加速度250%向上
11秒で10回の連続宙返りに成功
外乱に耐える高い飛行安定性を実現

重い計算を軽量化する工夫

モデル予測制御で最適解を算出
模倣学習でAIモデルへ知識を圧縮
実機でのリアルタイム制御が可能に

米マサチューセッツ工科大学(MIT)の研究チームは、マルハナバチに匹敵する敏捷性を持つ超小型飛行ロボットを開発しました。従来のマイクロロボットは動きが緩慢でしたが、新たなAI制御技術により、狭い空間での高速飛行や障害物回避が可能になります。将来的には、倒壊した建物内での被災者捜索など、大型ロボットが進入できない災害現場での活用が期待されています。

このロボットの核心は、計算効率と制御精度を両立させた「2段階のAI制御システム」です。まず、物理演算に基づくモデル予測制御を用いて、宙返りなどの複雑な動作に必要な最適軌道を計画します。次に、その膨大な計算結果を教師データとして「模倣学習」を行い、軽量なニューラルネットワークに圧縮することで、機体でのリアルタイム処理を実現しました。

実験では、従来機と比較して飛行速度が約450%、加速度が約250%向上するという劇的な成果を上げました。風による外乱があっても姿勢を崩さず、わずか11秒間で10回の連続宙返りを成功させています。研究チームは今後、カメラやセンサーを搭載し、外部システムに依存しない完全自律飛行の実現を目指して開発を進める方針です。

AIの死角を消す多様性:MS幹部が語るWiML20年の教訓

少数派から巨大組織へ

WiML設立20周年、NeurIPSと併催
同質的な組織は技術的な盲点リスクを生む

責任あるAIと生成AIの評価

責任あるAIは現場の複雑な課題から進化
生成AI評価には社会科学的な測定手法が必要

成果を最大化する思考法

AIへの過度な依存や主体性の喪失を懸念
完璧主義を捨て未完成でも成果を共有せよ

Microsoft Researchの幹部研究者であり、「Women in Machine Learning(WiML)」の共同創設者でもあるジェン・ウォートマン・ヴォーン氏とハンナ・ウォラック氏が、同団体の20周年を記念して対談を行いました。AI分野における多様性の欠如がもたらす技術的なリスクや、生成AI時代における評価指標の難しさについて、自身のキャリアを振り返りながら語っています。技術リーダーやエンジニアにとって、組織づくりとAIガバナンスのヒントとなる内容です。

2005年当時、世界最大級のAI国際会議「NeurIPS」の参加者はわずか600人程度で、女性研究者は極めて少数でした。孤独を感じたヴォーン氏らは、手書きのリストからWiMLを立ち上げ、現在では数千人規模の巨大コミュニティへと成長させました。彼女たちは、組織の同質性が技術的な盲点を生み、ゲートキーピングや有害なシステム開発につながると指摘します。多様な視点を取り入れることは、単なる公平性の問題ではなく、AIシステムのリスクを低減し、品質を高めるための必須条件なのです。

両氏は、キャリアを通じて「責任あるAI(Responsible AI)」の確立に尽力してきました。当初は数理的な理論に関心を持っていましたが、現場の課題に向き合う中で、人間とAIの相互作用(HCI)や社会科学の視点を取り入れる重要性に気づいたといいます。特に現在の生成AIブームにおいては、従来の「予測精度」のような明確な指標が通用しません。ウォラック氏は、生成AIの有用性や安全性を測るためには、社会科学的な測定手法を導入し、抽象的な概念を厳密に評価する必要があると提言しています。

AIの未来について、ヴォーン氏は楽観的な視点を持ちつつも、人間がAIに過度に依存し、主体性やスキルを失うリスクを懸念しています。AIは人間の能力を拡張するツールであるべきで、思考を放棄させるものであってはなりません。最後に、両氏は次世代のリーダーに向けてアドバイスを送りました。自らのパッションに従うこと、そして完璧主義を捨てて未完成の段階でも成果を共有することが、結果としてイノベーションと強固なネットワーク構築につながると強調しています。

AGIリスク警告へ、研究者がバチカン教皇にロビー活動

バチカンの影響力に期待

14億人を導く道徳的権威
米中対立における中立的な仲裁役
新教皇は理系出身で技術に精通

迫るAGIとテック企業の動き

数年以内のAGI実現も視野
ビッグテックもバチカンへ接近中
科学的な諮問機関の設置を要請

宗教界への浸透作戦

専門家集団「AI Avengers」を結成
教皇への直訴は失敗も手紙を手渡す
聖職者の関心高く対話は継続

2025年12月、AGI(汎用人工知能)の研究者らが、バチカン教皇庁に対してロビー活動を活発化させています。目的は、教皇レオ14世にAGIの存亡リスクを深刻に受け止めてもらい、正式な科学的諮問プロセスを開始させることです。巨大テック企業が開発を急ぐ中、研究者らはカトリック教会の持つ「ソフトパワー」が、国際的なAI規制の鍵になるとみています。

なぜ今、バチカンなのでしょうか。軍事力も経済力も持たない小国ですが、14億人の信者に対する道徳的権威と、独自の外交ネットワークを有しています。特に米中間の緊張が高まる中、中立的な仲裁者としての役割が期待されます。さらに、史上初のアメリカ人教皇であるレオ14世は数学の学位を持ち、テクノロジーへの造詣も深いとされ、技術的な議論に適任と見られています。

活動の中心人物であるJohn-Clark Levin氏は、バチカンに対し、AGIを単なるAIの一機能としてではなく、全く異なる重大な脅威として認識するよう求めています。産業革命が社会を根底から変えたように、AGIもまた予測不能な変革をもたらす可能性があるからです。彼らは、教皇が気候変動問題で科学的知見を取り入れたように、AGIについても専門家による諮問機関を立ち上げることを目指しています。

時間との戦いという側面もあります。OpenAIGoogleなどの巨大テック企業もまた、自社のAIアジェンダを推進するためにバチカンへ接近しています。Levin氏は、企業側の緩い基準が採用される前に、バチカンが客観的な科学的評価に基づいた独自の立場を確立する必要があると考えています。AGIの到来が数年以内に迫っているとの予測もあり、対策の窓は狭まっています。

Levin氏は先日、教皇への直接謁見の機会を得ましたが、プロトコルの変更により直接対話は叶いませんでした。しかし、AGIリスクを訴える手紙を秘書に託すことには成功しました。バチカン内部でのAGIに対する関心は予想以上に高く、「異端」として拒絶されることはなかったといいます。科学と宗教の対話による、長期的なコンセンサス形成が始まっています。

ホテル写真とAIで人身売買被害者を特定・救出へ

データの「質」を埋めるアプリ

旅行者の投稿で学習データを構築
広告と現場写真のドメインギャップ解消
散らかった部屋などリアルな環境を再現

捜査を支援するAI技術

ニューラルネットで画像ベクトル化
人物消去・背景補完のインペインティング
NCMECと連携し被害児童の救出に貢献

米セントルイス大学のAbby Stylianou教授らが開発したアプリ「TraffickCam」が、AIを活用して人身売買被害者の捜索に革新をもたらしています。旅行者が投稿したホテルの部屋の写真をデータベース化し、捜査機関が被害者の写真と照合して撮影場所を特定するための支援ツールです。

人身売買業者は被害者の写真をオンライン広告に利用しますが、背景となるホテルの一室から場所を特定するのは困難でした。ネット上のホテル写真はプロが撮影した「完璧な広告写真」であり、実際の現場写真(散らかり、照明不足)とは見た目が大きく異なるドメインギャップがAIの精度を下げていました。

この課題に対し、TraffickCamは一般ユーザーの力を借ります。旅行者が自身の宿泊した部屋を撮影・投稿することで、被害者の写真に近い「リアルな画像データ」を収集。これを教師データとしてAIモデルを訓練することで、照合精度を劇的に向上させました。

システムはニューラルネットワークを用いて画像の特徴を数値ベクトル化し、類似画像検索します。また、被害者が写っている画像から人物を消去する際、単に塗りつぶすのではなく、AIで自然な背景テクスチャを補完(インペインティング)することで、検索精度を高める技術も採用されています。

このシステムは全米行方不明・被搾取児童センター(NCMEC)で実際に運用されています。ある事例では、ライブ配信されていた虐待動画のスクリーンショットからホテルを即座に特定し、警察が急行して子供を救出することに成功しました。AIとクラウドソーシングが社会正義を実現する好例といえます。

Google、第7世代TPU「Ironwood」提供開始 推論性能4倍へ

AI推論に特化した第7世代

前世代比で性能が4倍以上向上
業界最高水準のエネルギー効率

大規模な相互接続とメモリ

最大9,216チップを接続可能
1.77PBの共有メモリ

AIが設計するハードウェア

AlphaChipによる設計最適化
研究部門と連携し開発加速

Googleは25日、第7世代TPU「Ironwood」をクラウド顧客向けに提供開始しました。AIの推論処理に特化し、前世代と比較してチップあたりの性能を4倍以上に高め、最もエネルギー効率に優れたチップとなっています。

AI開発の主戦場が学習から活用へと移る中、Ironwoodは大量のデータを低遅延で処理するよう設計されました。これにより、複雑なモデルも高速かつスムーズに動作し、企業の生産性向上に大きく寄与します。

特筆すべきは圧倒的な拡張性です。最大9,216個のチップを高速ネットワークで相互接続し、1.77ペタバイトもの共有メモリを利用可能にすることで、大規模モデルにおけるデータ転送のボトルネックを解消しました。

設計にはGoogle DeepMindが協力し、AIを用いてチップ配置を最適化する「AlphaChip」を活用しています。AI自身が次世代のハードウェアを進化させる好循環を生み出し、競合他社との差別化を図っています。

EUが米国の圧力で技術規制を緩和へ、AI法などに遅れも

対米配慮でEU規制が後退

トランプ政権とビッグテックの圧力が増大
EU AI法の罰則適用が1年延期される可能性
デジタル市場法などの主要規制も再考の動き

通信・宇宙分野でも米が介入

通信網改革のデジタルネットワークが停滞
EU宇宙法案に対し米国務省が公然と反対
6GHz帯域利用で米Wi-Fi業界に配慮要求

欧州委員会が、米国政府や大手テック企業の圧力を受け、主要なデジタル規制の大幅な見直しを進めていることが明らかになりました。2025年11月現在、EU AI法やデジタル市場法などの施行スケジュールや内容が骨抜きにされる懸念が高まっています。

特に注目すべきは、AI規制の世界的モデルとされた「EU AI法」の動向です。違反に対するペナルティ適用の開始が、当初予定の2026年8月から2027年8月へと1年延期される可能性が浮上しており、企業へのコンプライアンス猶予が長引く見込みです。

背景には、8月に結ばれた米欧間の関税合意以降、トランプ政権の後ろ盾を得た米巨大テック企業によるロビー活動の激化があります。米国務省もEU宇宙法案などが米国企業の活動を阻害するとして、修正を強く求めています。

通信分野の統合を目指す「デジタルネットワーク法」も暗礁に乗り上げています。ドイツなどがインフラ更新期限に難色を示しているほか、各国の規制当局が権限縮小を警戒しており、単一通信市場の実現は遠のきつつあります。

日本企業にとっても、欧州の規制動向は海外展開の試金石です。EUの規制緩和は、AI開発やサービス展開における参入障壁の低下を意味する一方、国際標準の流動化による不確実性が高まることも示唆しています。

AI業界は『一つの塊』へ融合 巨大テックが築く相互依存網

複雑化する資金と技術の循環

MicrosoftNvidia循環的な取引構造
Anthropicへの巨額投資と利用確約

計算資源の壁と単独の限界

スケーリング則による莫大な開発コスト
インフラ構築に向けた全方位的な提携

潜在する共倒れのリスク

政府や海外資本を巻き込む巨大な塊
バブル崩壊時に波及する連鎖的危機

米WIRED誌は、現在のAI業界が個別の競争を超え、巨大企業が複雑に絡み合う「Blob(塊)」と化していると報じています。MicrosoftNvidiaGoogleなどの巨人が、資金と技術を相互に循環させる構造を形成しており、かつて描かれた非営利主導の理想とは異なる、巨大な営利エコシステムが誕生しました。

この構造を象徴するのが、MicrosoftNvidiaAnthropicによる最近の戦略的提携です。MicrosoftOpenAIの競合であるAnthropicに出資し、Anthropicはその資金でAzureを利用、Nvidiaも出資して自社半導体の採用を確約させました。これは単なる競争ではなく、「互いが互いの顧客になる」という循環的な依存関係の深化を意味します。

なぜこれほどの癒着が進むのか。背景にはAIモデルの性能向上に不可欠なスケーリング則」の現実があります。想定を遥かに超える計算資源とデータセンター建設が必要となり、いかなる巨大企業であっても単独でのインフラ構築が困難になりました。結果、開発企業はクラウド事業者や半導体メーカーと全方位的なパートナーシップを結ばざるを得ません。

懸念されるのは、この相互依存ネットワークが一蓮托生のリスクを孕んでいる点です。米国政府はこの動きを規制するどころか、サウジアラビアなどの海外資本流入を含めて後押しする姿勢を見せています。しかし、もしAIバブルが弾ければ、相互に接続されたすべてのプレイヤーが同時に危機に直面する「共倒れ」の危険性が潜んでいます。

OpenAI新モデル、長時間自律開発で生産性7割増を実現

コンテキスト制限を打破する技術

コンパクション」で数百万トークンを処理
24時間以上の長時間タスクを自律的に完遂
推論トークンを30%削減しコストを低減

競合を凌駕する圧倒的性能

SWE-benchで77.9%を記録し首位
GoogleGemini 3 Proを上回る
社内エンジニアのPR出荷数が約70%増加
CLIやIDEなどの開発環境で即利用可能

OpenAIは2025年11月19日、エージェントコーディングモデル「GPT-5.1-Codex-Max」を発表しました。数百万トークンの文脈を維持し、長時間にわたる開発タスクを自律遂行可能です。エンジニア生産性を劇的に高める革新的なツールとして注目されます。

最大の特徴は、新技術「コンパクション」の搭載です。作業履歴を圧縮して記憶を継承することで、コンテキスト制限を克服しました。これにより、大規模なリファクタリングや24時間以上続くデバッグ作業など、従来は不可能だった複雑な長期タスクを完遂できます。

性能面では、Googleの最新モデル「Gemini 3 Pro」を主要指標で上回りました。SWE-bench Verifiedでは77.9%の正答率を記録し、業界最高水準を達成。さらに推論プロセスの最適化によりトークン使用量を30%削減し、コスト効率も向上させています。

ビジネスへの貢献も実証済みです。OpenAI社内ではエンジニアの95%が日常的に利用し、導入後のプルリクエスト出荷数が約70%増加しました。単なる支援ツールを超え、開発速度と品質を底上げする「自律的なパートナー」として機能しています。

本モデルは現在、ChatGPT PlusやEnterpriseプラン等のCodex環境で利用可能で、API提供も近日中に開始されます。デフォルトでサンドボックス環境にて動作し、ネットワークアクセスも制限されるなど、企業が安心して導入できるセキュリティ設計も徹底されています。

Google、学生とAIで地域課題解決 コロラドでハッカソン

産官学連携で挑む地域課題

Googleボルダーで初のハッカソン
州知事や70名以上の学生が参加
エネルギー局が実課題を提供

生成AIが加速する解決策

全チームがGeminiを活用
アイデア出しから資料作成まで
AIとの対話で思考を深化

斬新な受賞アイデア

個人EV充電器のシェアリング
住宅向け省エネ改修アプリ

Googleは11月5日、米国コロラド州ボルダーで初の「インパクト・ハッカソン」を開催しました。地元の学生や州政府と連携し、AIを活用して地域のエネルギー問題解決に取り組む、産官学連携の新たなモデルケースです。

特筆すべきは、参加した全10チームが生成AI「Geminiなどを実務レベルで活用した点です。ロゴ作成やスライド設計に加え、AIを壁打ち相手にアイデアを磨き上げ、短期間で質の高い解決策を導き出しました。

課題は州エネルギー局から提供され、EVインフラ整備や気候変動対策の人材不足などがテーマとなりました。最優秀賞には、個人のEV充電器を公共ネットワークするアイデアが選ばれ、高い評価を得ています。

ジャレッド・ポリス州知事も登壇し、テクノロジーによるインフラ革新の重要性を強調しました。次世代のリーダーたちが最新技術を用いて社会課題に挑むこの取り組みは、地域イノベーションの創出に大きく貢献しています。

Ring創業者、AIで「犯罪ゼロ」の未来を描く

AIが実現する安全な未来

AIによる異常検知で犯罪抑止
迷子ペット捜索機能'Search Party'
ユーザーデータに基づく防犯インテリジェンス
最終目標は地域の犯罪ゼロ化

課題とリーダーシップ

警察連携とプライバシー保護の両立
AI生成の偽映像対策が急務
開発期間を18ヶ月から6ヶ月へ短縮
創業者迅速な意思決定が鍵

Amazon傘下のスマートホーム企業Ringの創業者ジェイミー・シミノフ氏が、AIを活用して「近隣の犯罪をゼロにする」という壮大なビジョンを明らかにしました。同氏はインタビューで、監視カメラネットワークとAI分析を組み合わせ、地域の安全性を飛躍的に高められると強調。一方で、プライバシー保護や警察との連携が新たな経営課題として浮上しています。

シミノフ氏が描くのは、AIが「地域の目」として機能する未来です。例えば、迷子になったペットを近隣のRingカメラ映像からAIが自動で探し出す「Search Party」機能。これは、AIが膨大な映像データを解析し、異常検知や有益な情報の抽出を行う応用例の一つです。同氏はこの技術を発展させ、最終的に特定の地域における犯罪をほぼゼロにできると見込んでいます。

しかし、このビジョンは「監視社会」への懸念と隣り合わせです。特に、Ringが警察と提携し、捜査目的で映像データの提供を要請できる仕組みは、物議を醸してきました。テクノロジーによる安全性の向上と、個人のプライバシー侵害のリスク。このトレードオフに、どう向き合うべきでしょうか。

シミノフ氏はこの点について、データのコントロール権はあくまでユーザーにあると強調します。警察からの映像提供要請に応じるかどうかは、ユーザーが匿名で任意に決定できる仕組みを整備。これにより、捜査協力の効率化とプライバシー保護の両立を目指す考えです。利便性と安全性のバランスを取るための、重要な設計思想と言えるでしょう。

さらに、AI時代ならではの新たな脅威も浮上しています。それは、AIによって生成された本物と見分けのつかない偽の映像(ディープフェイクです。Ringの映像が持つ信頼性が揺らげば、証拠としての価値も失われかねません。同氏は、映像が改ざんされていないことを保証する「デジタル指紋」のような仕組みの重要性を認識しており、今後の技術的な課題となっています。

経営者やリーダーにとって示唆に富むのは、シミノフ氏の組織運営の手腕です。一度Ringを離れ、AIの進化を目の当たりにして復帰した彼は、硬直化した開発プロセスを抜本的に見直し。従来18ヶ月かかっていた製品開発を、わずか6ヶ月に短縮することに成功しました。創業者の強力なリーダーシップと迅速な意思決定が、大企業の中でもイノベーションを加速させています。

NVIDIA、スパコン革新で科学技術の新時代へ

AI物理モデルと新ハード

AI物理モデルApollo発表
次世代DPU BlueField-4
量子連携技術NVQLink

世界80以上のスパコン採用

米学術最大級Horizon構築
エネルギー省に7基導入
日本の理研も新システム採用
欧州初のExascale機も

NVIDIAは、先日開催されたスーパーコンピューティング会議「SC25」で、AI時代の科学技術計算をリードする一連の革新技術を発表しました。シミュレーションを加速するAI物理モデルApolloや、データセンターの頭脳となる次世代DPU BlueField-4、量子コンピュータと連携するNVQLinkなどが含まれます。これらの技術は世界80以上の新システムに採用され、研究開発のフロンティアを大きく押し広げます。

特に注目されるのが、AI物理モデル群「Apollo」です。これは、電子デバイス設計から流体力学、気候変動予測まで、幅広い分野のシミュレーションをAIで高速化するものです。従来手法より桁違いに速く設計空間を探索できるため、SiemensやApplied Materialsなどの業界リーダーが既に採用を表明。製品開発サイクルの劇的な短縮が期待されます。

AIファクトリーのOSを担うのが、次世代データ処理装置(DPU)「BlueField-4」です。ネットワーク、ストレージ、セキュリティといった重要機能をCPUやGPUからオフロードすることで、計算リソースをAIワークロードに集中させます。これにより、データセンター全体の性能と効率、そしてセキュリティを飛躍的に向上させることが可能になります。

これらの最先端技術は、世界中のスーパーコンピュータで採用が加速しています。テキサス大学の学術機関向けでは米国最大となる「Horizon」や、米国エネルギー省の7つの新システム、日本の理化学研究所のAI・量子計算システムなどがNVIDIAプラットフォームで構築されます。科学技術計算のインフラが、新たな次元へと進化しているのです。

さらに未来を見据え、NVIDIAは量子コンピューティングとの連携も強化します。新技術「NVQLink」は、GPUスーパーコンピュータと量子プロセッサを直接接続するユニバーサルなインターコネクトです。これにより、古典計算と量子計算を組み合わせたハイブリッドなワークフローが実用的になり、これまで解けなかった複雑な問題への挑戦が始まります。

一連の発表は、NVIDIAが単なるハードウェア供給者ではなく、AI時代の科学技術インフラをソフトウェア、ハードウェアエコシステム全体で定義する存在であることを示しています。経営者エンジニアにとって、このプラットフォーム上でどのような価値を創造できるか、その真価が問われる時代が到来したと言えるでしょう。

OpenAI、AIの思考回路を可視化する新手法

スパース回路という新発想

AIの接続を意図的に制限
単純で追跡可能な思考回路の形成
従来の密なネットワーク単純化

性能と解釈可能性の両立へ

モデル規模拡大で性能と両立
特定タスクを担う回路の特定に成功
AIの安全性・信頼性の向上
ブラックボックス問題解決への道

OpenAIは2025年11月13日、AIの動作原理を解明する新手法を発表しました。意図的にニューロン間の接続を減らした「スパース(疎な)回路」を持つモデルを訓練することで、AIの「思考プロセス」を単純化し、人間が理解しやすい形で追跡可能にします。この研究は、AIのブラックボックス問題を解決し、その安全性と信頼性を高めることを目的としています。

なぜAIの「思考」を理解する必要があるのでしょうか。AIが科学や医療といった重要分野の意思決定に影響を及ぼす現在、その動作原理の理解は不可欠です。特に、モデルの計算を完全に解明しようとする「メカニスティック解釈可能性」は、AIの安全性を担保する上で究極的な目標とされています。今回の研究は、この目標に向けた重要な一歩と言えるでしょう。

新手法の核心は、モデルの構造を根本から変える点にあります。従来のAI、すなわち「密なネットワーク」は、ニューロン間の接続が蜘蛛の巣のように複雑で、人間には解読不能でした。そこで研究チームは、接続の大部分を強制的にゼロにする「スパース(疎な)モデル」を訓練。これにより、特定の機能を持つ単純で分離された「回路」が形成され、分析が格段に容易になります。

このアプローチは有望な結果を示しています。モデルの規模を拡大しつつスパース性を高めることで、高い性能と解釈可能性を両立できる可能性が示唆されました。実際に、Pythonコードの引用符を正しく補完するタスクでは、特定のアルゴリズムを実装したごく少数の単純な回路を特定することに成功。AIの判断根拠が具体的に可視化されたのです。

本研究はまだ初期段階であり、OpenAIの最先端モデルのような超大規模システムへの応用には課題も残ります。スパースモデルの訓練は非効率なため、今後は既存の密なモデルから回路を抽出する手法や、より効率的な訓練方法の開発が求められます。しかし、AIのブラックボックスに光を当て、より安全で信頼できるシステムを構築するための確かな道筋を示したと言えるでしょう。

LinkedIn、AI人物検索導入 13億人から自然言語で探す

自然言語で意図を理解

「専門知識を持つ人」など曖昧な表現検索
AIが検索意図を解釈し、最適人材を提示
従来のキーワード検索の限界を克服
米国Premium会員から先行提供

大規模化を支える技術

13億人への展開に向けた最適化
巨大AIモデルを小型化する「蒸留」技術
GPUインフラ移行で高速検索を実現
開発手法を「クックブック」として横展開

ビジネス特化型SNSのLinkedInは2025年11月13日、自然言語で人物を検索できるAI搭載の新機能を発表しました。これによりユーザーは、従来のキーワード検索では難しかった「米国の就労ビザ制度に詳しい人」といった曖昧な質問形式でも、13億人以上の会員の中から最適な人材を探し出せるようになります。

新機能は、大規模言語モデル(LLM)がユーザーの入力した文章の意味や意図を深く理解することで実現します。例えば「がん治療の専門家」と検索すると、AIは「腫瘍学」や「ゲノム研究」といった関連分野の専門家も候補として提示。利用者のネットワーク内でより繋がりやすい人物を優先表示するなど、実用性も考慮されています。

しかし、この機能の実現は容易ではありませんでした。13億人という膨大なユーザーデータを処理し、瞬時に的確な結果を返すには、既存のシステムでは限界があったのです。特に、検索関連性と応答速度の両立が大きな課題となり、開発チームは数ヶ月にわたり試行錯誤を重ねました。

課題解決の鍵となったのが、「クックブック」と称されるLinkedIn独自の開発手法です。まず、非常に高精度な巨大AIモデルを「教師」として育成。その教師モデルが持つ知識を、より軽量で高速な「生徒」モデルに教え込む「蒸留」というプロセスを採用しました。これにより、性能をほぼ維持したまま、実用的な速度を達成したのです。

さらに、検索速度を抜本的に改善するため、データ処理の基盤を従来のCPUからGPUベースのインフラに移行。入力データをAIが要約して処理量を20分の1に削減するなどの工夫も凝らし、最終的に検索スループットを10倍に向上させました。こうした地道な最適化が、大規模サービスを支えています。

LinkedInの幹部は、流行の「AIエージェント」を追うのではなく、まずは推薦システムのような実用的な「ツール」を磨き上げることが重要だと語ります。今回の成功体験を「クックブック」として体系化し、今後は他のサービスにも応用していく方針です。企業におけるAI活用の現実的なロードマップとして、注目すべき事例と言えるでしょう。

GitHub、10月は障害4件発生 外部依存の脆弱性露呈

月前半の内部要因障害

ネットワーク機器の修理ミス
APIエラー率が一時7.3%に
クラウドの設定変更が原因
モバイル通知の配信に失敗

外部依存による大規模障害

サードパーティ障害が2件発生
Codespacesでエラー率最大100%
ActionsやImporterも影響
外部依存の見直しが急務に

GitHubは2025年10月に4件のサービス障害が発生したと公表しました。これらの障害はAPI、GitHub Actions、Codespacesなど多岐にわたるサービスに影響を及ぼしました。特に後半の2件はサードパーティプロバイダーの障害に起因するもので、外部サービスへの依存が安定稼働における脆弱性となっている実態が浮き彫りになりました。

最も深刻だったのは10月29日の障害です。広範囲にわたるサードパーティプロバイダーの障害により、Codespacesでは接続エラー率が一時100%に達しましたGitHub ActionsのホストランナーやEnterprise Importerサービスも影響を受け、一部のワークフローが失敗するなど、約7時間にわたり開発者生産性に大きな打撃を与えました。

10月20日にも、別のサードパーティへの依存が原因で障害が発生しました。devcontainerイメージのビルドに必要な外部サービスが停止したことで連鎖的な障害が起き、Codespacesの新規作成でエラー率が平均39.5%、既存環境の再開でも平均23.4%のエラーを記録。開発環境へのアクセスが2時間以上にわたり困難となりました。

月前半には内部要因による障害も発生しました。9日には修理未完了のネットワーク機器が本番環境に投入されたことでパケットロスが発生。17日にはクラウドの設定ミスにより、モバイルプッシュ通知が70分間にわたり配信されませんでした。これらのインシデントに対し、同社は検証プロセスや手順の見直しを進めています。

一連の障害を受け、GitHubは再発防止策を強化する方針です。個別の原因への対策に加え、特に外部プロバイダーへのクリティカルパス依存の削減を最優先課題として挙げています。同様の事態が発生した際にサービスを適切に縮退させる機能の実装も進め、システムの回復力向上を目指すとしています。

Anthropic、欧州事業拡大 パリとミュンヘンに新拠点

欧州での急成長

EMEA地域が最速成長
ランレート収益が過去1年で9倍
大口顧客数は10倍以上に増加
ロレアルやBMWなど大手企業が導入

事業拡大の新体制

パリとミュンヘンに新オフィス開設
EMEA地域の従業員数が3倍
各地域に精通したリーダーを任命
現地の教育・文化団体と提携

AI開発企業Anthropicは11月7日、フランスのパリとドイツのミュンヘンに新オフィスを開設し、欧州事業を拡大すると発表しました。欧州・中東・アフリカ(EMEA)は同社で最も急成長している地域で、ランレート収益は過去1年で9倍以上に増加。この旺盛なAI需要に対応するため、拠点を拡充し、体制を強化します。

なぜフランスとドイツなのでしょうか。両国はAIモデル「Claude」の一人当たり利用率で世界トップ20に入り、市場としての潜在力が大きいことが挙げられます。また、ヘルスケア、金融、自動車など世界をリードする企業が多数拠点を構えており、これらの企業との連携を深める狙いがあります。

既に欧州では、ロレアル、BMW、SAP、サノフィといった大手企業がClaudeを導入しています。ソフトウェア開発やネットワーク問題の解決など、高い精度と信頼性が求められる業務で活用が進んでいます。デジタルネイティブ企業での導入も拡大しており、AIが欧州の主要産業に変革をもたらしつつあることを示しています。

事業拡大に伴い、経営体制も強化します。EMEA地域全体で従業員数を過去1年で3倍に増強。さらに、英国・アイルランドなどを統括するEMEA北担当、フランスや南欧を統括するEMEA南担当など、各地域の市場に精通したリーダーを新たに任命し、顧客ニーズに迅速に対応できる体制を構築しました。

Anthropicは事業展開だけでなく、地域社会との連携も重視しています。ミュンヘン工科大学の学生団体が主催するハッカソンや、フランスのAI開発者コミュニティを支援。現地の教育機関や文化団体と協力し、AI人材の育成やエコシステムの発展にも貢献していく方針です。

Googleが警鐘、AI悪用詐欺の巧妙化と新脅威

増加するAI悪用詐欺

人気AIツールへの偽アクセス提供
生成AIによる偽サイトの高品質化
巧妙な求人詐欺でのなりすまし

企業を狙う新たな脅威

低評価レビューによる金銭恐喝
偽VPNアプリを通じた情報窃取
偽求人を通じた社内網侵入リスク

被害を防ぐための対策

公式ストアからのアプリ導入
安易な個人情報提供の回避

Googleは2025年11月、最新の詐欺に関する警告を発表しました。世界的に詐欺は巧妙化しており、特にAIを悪用した手口が急増しています。偽のAIツールやオンライン求人詐欺、企業の評判を悪用した恐喝など、新たな脅威が次々と出現しており、企業・個人双方に警戒を呼びかけています。

特に注目すべきは、人気のAIサービスを装う詐欺です。攻撃者は「無料」や「限定アクセス」を謳い文句に、偽のアプリやウェブサイトへ誘導します。その結果、マルウェア感染や情報漏洩、高額な料金請求といった被害につながるため、公式ドメインからのダウンロード徹底が求められます。

企業の採用ページを模倣したオンライン求人詐欺も増加しています。偽の求人広告や採用担当者をかたり、登録料を要求したり、面接と称して個人情報や銀行情報を盗み出したりします。企業のネットワーク侵入の足掛かりにされる危険性もあり、求職者・企業双方にリスクをもたらします。

企業経営者にとって深刻なのが「低評価レビュー恐喝」です。悪意のある人物が意図的に大量の低評価レビューを投稿し、それを取り下げることと引き換えに金銭を要求する手口です。企業のブランドイメージや収益に直結するため、Googleは通報窓口を設けるなど対策を強化しています。

Google自身も対策を講じています。同社はAIを活用して不正な広告やアプリを検出し、リアルタイムで警告を発するセーフブラウジング機能などを提供。Google Playの審査強化や不正行為に関するポリシーを厳格に適用し、エコシステム全体の保護に努めています。

被害を防ぐには、利用者側の警戒心が不可欠です。「うますぎる話」を疑い、提供元が公式なものかURLを慎重に確認することが重要です。特に機密情報を扱う経営者エンジニアは、セキュリティ意識を常に高く保つ必要があります。安易なダウンロードや情報提供は避けるべきでしょう。

脱Attention機構、新AIが計算コスト98%減を達成

新技術Power Retention

Attention機構を完全撤廃
RNNのように逐次的に情報を更新
文脈長に依存しない計算コスト

驚異的なコスト効率

再学習コストは僅か4,000ドル
Transformerの2%未満の費用
既存モデルの知識を継承し効率化

Transformerに匹敵する性能

主要ベンチマーク同等性能を記録
長文脈や数学推論で優位性

AIスタートアップのManifest AIが2025年10月28日、Transformerアーキテクチャの根幹「Attention機構」を代替する新技術「Power Retention」を発表しました。この技術を用いた新モデル「Brumby-14B-Base」は、既存モデルをわずか4,000ドルで再学習させることで、Transformerに匹敵する性能を達成。AI開発のコスト構造を根底から覆す可能性を秘めています。

現在の主要な大規模言語モデルは、Transformerアーキテクチャを基盤とします。その中核であるAttention機構は強力ですが、文脈が長くなるほど計算コストが二次関数的に増大するという深刻な課題を抱えていました。これがモデルの長文脈対応のボトルネックとなっていたのです。

Manifest AI開発の「Power Retention」は、この課題を解決する新技術です。Attention機構のように文脈全体を一度に比較せず、リカレントニューラルネットワーク(RNN)のように情報を逐次的に圧縮・更新します。これにより文脈長に関わらず計算コストが一定に保たれます。

Brumby-14B-Baseモデルの衝撃は、その圧倒的なコスト効率です。既存モデルをわずか60時間、約4,000ドルで再学習を完了。ゼロから学習する場合の2%未満の費用です。これはAI開発の参入障壁を劇的に下げ、より多くの組織に大規模実験の道を開きます。

低コストながら性能に妥協はありません。Brumbyモデルは各種ベンチマークで、元のモデルや他の同規模Transformerモデルと同等以上のスコアを記録しました。特に、Attention機構が苦手とする長文脈の読解や数学推論といったタスクで優位性を示し、新アーキテクチャの利点を裏付けています。

この成果は、AI界を約10年にわたり支配してきたTransformer一強時代に風穴を開けるものかもしれません。Manifest AIは「Transformer時代の終わりはまだだが、その行進は始まった」と述べています。AIアーキテクチャの多様化が進み、開発競争が新たな局面に入ることは間違いないでしょう。

Google、宇宙AIデータセンターで計算能力を拡張

壮大な宇宙構想

Google新研究計画サンキャッチャー
宇宙空間でのAI計算能力を拡張
TPU搭載衛星をネットワーク

宇宙ならではの利点

常時太陽光で安定した電力供給
地上の最大8倍太陽光発電効率
地上の電力・土地問題を回避

実現への道のり

衛星間の超高速通信が最大の課題
2027年に試作機打ち上げ予定

Googleは2025年11月4日、宇宙空間で機械学習の計算能力を飛躍的に拡張する新研究計画「プロジェクト・サンキャッチャー」を発表しました。AIチップTPU」を搭載した多数の衛星を太陽光発電で稼働させ、ネットワーク化する壮大な構想です。地上のデータセンターが抱える電力消費や土地問題を解決し、AIの可能性を最大限に引き出すことを目指します。

この構想の背景には、AIの急速な発展に伴うデータセンターの爆発的な増加があります。その膨大な電力消費と設置場所の確保は、IT業界全体の大きな課題です。実際、イーロン・マスク氏なども宇宙空間でのデータセンター構想に言及しており、宇宙利用はAIインフラの新たなフロンティアとなりつつあります。

宇宙空間が持つ最大の利点は、ほぼ無限の太陽エネルギーを利用できる点です。「サンキャッチャー」計画では、衛星を常に太陽光が当たる軌道に投入します。宇宙のソーラーパネルは地上の最大8倍も発電効率が高く、安定的かつクリーンな電力でAIを稼働させることが可能になります。

実現には、多くの技術的課題を乗り越える必要があります。最大の難関は、高速で移動する衛星同士を超高速の光通信で接続する技術です。Googleはすでに地上での実験で毎秒1.6テラビットの双方向通信に成功しており、今後さらなるスケールアップを目指す方針です。

Googleはこの計画を、自動運転技術「Waymo」のような長期的な「ムーンショット(壮大な挑戦)」と位置付けています。第一歩として、パートナー企業と共に2027年初頭までに試作衛星2基を打ち上げ、軌道上でのハードウェア性能を検証する予定です。AIの未来を宇宙に託す挑戦が、今まさに始まりました。

Anthropic、アイスランドで国家AI教育実験を開始

国家主導のAI教育

アイスランド教育省との提携
世界初の包括的な国家AI教育実験
AIモデルClaudeを全教員に提供
遠隔地の教員も対象に含む

教員の負担軽減と教育革新

授業準備や事務作業の時間短縮
生徒一人ひとりに合わせた教材作成
アイスランド語の保護と活用
AI活用法のトレーニングも提供

AI開発企業Anthropicは11月4日、アイスランド教育・児童省と提携し、世界で初めてとなる包括的な国家AI教育パイロットプログラムを開始すると発表しました。この取り組みでは、アイスランド全土の教員に同社のAIモデル「Claude」を提供し、AIが教育をどう変革できるかを探ります。教員の負担軽減と生徒の学習体験向上が主な目的です。

この試験的プログラムでは、首都レイキャビクから遠隔地の村まで、アイスランド全土の数百人の教員が対象となります。参加する教員は、AI「Claude」へのアクセス権に加え、教育リソースやトレーニング教材、専用のサポートネットワークを利用できます。国家レベルで教員向けにAIツールを体系的に導入する先進的な事例と言えるでしょう。

AI導入の最大の狙いは、教員の働き方改革です。Claudeを活用することで、授業計画の作成や教材の準備といった時間を要する作業を効率化できます。これにより、教員は事務作業から解放され、生徒一人ひとりへの指導という本来の業務により多くの時間を割けるようになります。多様な学習ニーズに合わせた個別指導の実現も期待されています。

アイスランド政府は、AIの急速な発展を脅威ではなく機会と捉えています。「AIは社会に定着し、教育も例外ではない」と、グズムンドゥル・インギ・クリスティンソン教育・児童大臣は述べます。このプロジェクトは、教員のニーズを最優先し、最先端技術を教育現場で責任を持って活用するための野心的な挑戦と位置づけられています。

Anthropicにとって、今回の提携は公共部門での実績を積み重ねる世界戦略の一環です。同社はすでに欧州議会の公文書検索システムや、英国政府との公共サービス改革に関する覚書など、欧州の政府・公的機関との連携を深めています。教育分野での国家レベルのパートナーシップは、その戦略をさらに加速させるものです。

このアイスランドでの取り組みは、AIを教育に統合するモデルケースとして、世界中の注目を集める可能性があります。教員生産性を高め、次世代の学習環境を構築する試みが成功すれば、他の国々にも同様の動きが広がるかもしれません。AIが教育者の強力なパートナーとなる未来に向けた、重要な一歩と言えるでしょう。

VercelのAI、巧妙なボット網を5分で検知・遮断

巧妙化するサイバー攻撃

人間の活動を模倣するボット
新規ブラウザプロファイルで偽装
従来型防御をすり抜ける脅威

AIによるリアルタイム防御

トラフィックの異常を即時検知
複数シグナルの相関関係を分析
プロキシ経由の同一指紋を特定
わずか5分で脅威を自動分類・遮断
人手を介さないハンズフリー防御

Webインフラ開発プラットフォームを提供するVercelは10月29日、同社のAIセキュリティ機能「BotID Deep Analysis」が、人間になりすました高度なボットネットワークをリアルタイムで検知し、わずか数分で自動的にブロックしたと発表しました。このインシデントは、機械学習を活用した適応型防御が、巧妙化するサイバー攻撃にいかに有効であるかを示す好例です。

観測されたのは、これまで見られなかった全く新しいブラウザプロファイルを利用した巧妙なボットでした。これらのボットは、本物の人間が操作しているかのようなテレメトリ(遠隔情報)データを生成し、従来のセキュリティ対策を回避するように設計されていました。トラフィックは通常時の500%に急増したものの、当初は正当なユーザーによるアクセスと見分けがつきませんでした。

しかし、VercelのAIモデルは、これらの新規プロファイルが複数のプロキシIPを横断して現れるという特異なパターンを発見しました。正規のユーザーが、同じブラウザ情報を保ったまま、プロキシネットワークを高速で切り替え続けることはありません。これが、組織的なボット活動であることの決定的な証拠となりました。

このパターンを特定後、システムは自動的に対象セッションを再検証。その結果、悪意のあるボットネットワークであると正しく再分類し、攻撃検知からわずか5分後には該当トラフィックを完全に遮断しました。この一連のプロセスにおいて、顧客側での手動介入や緊急のルール更新は一切不要でした。

この事例は、攻撃者が多大なリソースを投じる回避型の攻撃に対し、リアルタイムで学習・適応するAI防御がいかに重要であるかを物語っています。単一の危険信号ではなく、ブラウザの指紋情報やネットワークパターンといった複数シグナルの相関関係を捉える能力が、今後のセキュリティ対策の鍵となるでしょう。

AI、難分解プラを資源に変える新酵素を発見

厄介なポリウレタンごみ

年間2200万トンの大量生産
複雑な化学構造で分解困難
従来法は有害廃棄物を生成

AIによる酵素設計

AIで新酵素をゼロから開発
ポリマーを基本単位まで分解
ニューラルネットワークが貢献

持続可能な再資源化へ

分解物を新製品の原料に再利用
産業規模リサイクルへの応用期待

研究者らが、これまでリサイクルが困難だったプラスチックの一種、ポリウレタンを効率的に分解する画期的な酵素を開発しました。この成果の鍵を握ったのは人工知能(AI)です。AIを用いて設計されたこの新酵素は、廃棄物を新たな製品の原料へと転換し、深刻化するプラスチック汚染問題に持続可能な解決策をもたらす可能性があります。

ポリウレタンは、クッション材や断熱材として広く利用され、2024年には世界で2200万トンも生産されました。しかし、その複雑で強固な化学構造のため、自然界ではほとんど分解されません。また、ポリマー鎖が複雑に絡み合っているため、酵素が作用しにくいという課題がありました。

従来、化学薬品を用いた分解法も存在しましたが、高温での処理が必要なうえ、再利用できない有害な化学物質の混合物が残るだけでした。結局は焼却処分するしかなく、環境負荷の大きい「厄介者」とされてきました。リサイクルの実現は長年の課題だったのです。

今回の研究チームは、この難題を解決するために高度なタンパク質設計ツール、すなわちニューラルネットワークを活用しました。AIが膨大なタンパク質構造の可能性を探査し、ポリウレタンの特定の化学結合を切断できる、まったく新しい酵素を「設計」することに成功したのです。

このAI設計酵素の特長は、ポリウレタンをその基本構成要素(ビルディングブロック)にまで完全に分解できる点にあります。分解して得られた物質は、再び新しいポリウレタンを製造するための原料として利用できます。これにより、廃棄物を資源として循環させる道が開かれました。

この技術は、産業規模でのリサイクルプロセスへの応用が期待されています。AIが物質科学の分野で新たな解決策を生み出した好例と言えるでしょう。経営者や技術者は、AIが自社のサステナビリティ課題や研究開発をいかに加速できるか、改めて注目すべきではないでしょうか。

AI検索でSEO25%減、次世代『GEO』が新常識に

AI検索が変える常識

従来検索25%減の予測
Google検索多様化・複雑化

新潮流「GEO」の要点

生成AIへの新最適化手法
簡潔で明瞭な回答が鍵
リンク無きブランド言及も重要

Geostar社の自動化戦略

AIエージェントによる自動最適化
学習内容を全顧客で共有・展開

調査会社ガートナーが、AIチャットボットの台頭により従来の検索エンジン利用量が2026年までに25%減少するとの予測を発表しました。企業のオンライン戦略が大きな転換点を迎える中、従来のSEO検索エンジン最適化)に代わる新手法「GEO(生成エンジン最適化)」が急速に注目を集めています。この新領域を先駆けるのが、スタートアップのGeostar社です。

なぜ今、GEOが重要なのでしょうか。ガートナーの予測に加え、プリンストン大学の研究では、AIシステム向けに最適化することで企業のオンラインでの可視性が最大40%向上する可能性が示唆されています。検索インターフェースは従来のGoogle検索だけでなく、AI OverviewChatGPTなどへと多様化・複雑化しており、それぞれ異なるアプローチが求められます。

SEOとGEOは根本的に異なります。従来のSEOがキーワードや被リンク数を重視したのに対し、GEOはAI(大規模言語モデル)がいかに情報を理解し、要約・生成するかに焦点を当てます。AIが求めるのは、冗長な説明ではなく、問いに対する簡潔で明確な回答であり、構造化されたデータ提供が鍵となります。

Geostar社はこの課題に対し、AIエージェントを顧客サイトに直接組み込むという画期的な解決策を提示します。このエージェントは、コンテンツや技術設定を継続的に自動で最適化し、ある顧客で得た知見をネットワーク全体で共有。まさに「代理店レベルの作業をソフトウェアのように拡張する」アプローチです。

GEOの時代では、評価指標も変わります。SEOで重視された「リンク」がなくとも、ニュース記事やSNSでの肯定的なブランド言及自体が、AIの評価に直接影響を与えるようになります。クリックされずとも、AIの回答内でいかに好意的に表示されるかという「インプレッション」が新たな成功指標となるでしょう。

この市場機会を捉えようと多くの企業がGEO分野に参入し、競争が激化しています。特に専門部署を持たない中小企業にとって、AI時代の変化への対応は死活問題です。オンラインで顧客に選ばれ続けるために、GEOへの取り組みはもはや選択肢ではなく、ビジネス存続のための必須戦略と言えるでしょう。

NVIDIA、史上初5兆ドル企業に AIブームが加速

驚異的な成長スピード

4兆ドルから僅か3ヶ月で達成
2022年末から株価は約12倍
AppleMicrosoftを上回る

株価を押し上げた好材料

5000億ドルのAIチップ受注見込み
アメリカ政府向けスパコン7基構築
Nokiaと次世代通信網提携
対中輸出協議への期待感

半導体大手NVIDIAが29日、株式市場で時価総額5兆ドル(約750兆円)を史上初めて突破しました。生成AIブームを背景に同社のGPU画像処理半導体)への需要が爆発的に増加。CEOによる強気な受注見通しの発表や、米中間の取引協議への期待感が株価を押し上げ、4兆ドル達成からわずか3ヶ月で新たな大台に乗せました。

株価上昇の直接的な引き金は、ジェンスン・フアンCEOが発表した複数の好材料です。同氏は、最新AIチップ「Blackwell」と次世代「Rubin」について、2026年末までに累計5000億ドルの受注を見込むと表明。さらにアメリカ政府向けに7つのスーパーコンピュータを構築する計画も明らかにしました。

トランプ大統領の発言も市場の追い風となりました。同大統領は、中国の習近平国家主席とNVIDIAの高性能チップ「Blackwell」について協議する意向を示唆。これにより、現在輸出規制の対象となっている中国市場への販売再開に対する期待感が高まり、投資家の買いを誘いました。

NVIDIAの成長スピードは驚異的です。2022年末にChatGPTが登場して以降、同社の株価は約12倍に急騰しました。時価総額4兆ドルを突破したのが今年7月。そこからわずか3ヶ月で5兆ドルに到達し、AppleMicrosoftといった巨大テック企業を突き放す形となっています。

同社は事業領域の拡大にも余念がありません。フィンランドの通信機器大手Nokiaに10億ドルを投資し、AIをネイティブに活用する次世代通信規格「5G-Advanced」や「6G」ネットワークの共同開発で提携半導体事業に留まらない成長戦略を描いています。

一方で、市場ではAI関連株の急激な上昇を「バブルではないか」と懸念する声も根強くあります。しかし、フアンCEOは「我々が利用するAIモデルやサービスに対価を払っている。バブルだとは思わない」と述べ、実需に裏打ちされた成長であることを強調しました。

Meta、ポルノ違法DLはAI学習目的ではないと否定

訴訟の概要

アダルト映画会社がMetaを提訴
AI学習目的の違法ダウンロードを主張
賠償額は3.5億ドル超の可能性

Metaの反論

ダウンロードは「個人利用」と主張
AI研究開始前のダウンロードも含む
規約でアダルトコンテンツ生成を禁止
原告は「著作権トロール」と批判

Metaが、AIモデルの学習に著作権のあるアダルト映画を違法にダウンロードしたとして、アダルト映画制作会社Strike 3 Holdingsから起こされた訴訟について、棄却を求める申し立てを行いました。Metaは、社内IPアドレスからのダウンロードはAI学習目的ではなく「個人的な使用」によるものだと主張し、疑惑を全面的に否定しています。

Meta側の最大の反論点は、ダウンロードの目的です。同社は、ダウンロードがAI学習のために組織的に行われたという証拠はなく、従業員らによる「個人的な使用」であったと主張。「これらの主張は偽物だ」と同社広報は強く否定しており、訴えは「憶測と当てこすり」に過ぎないと一蹴しています。

さらにMetaは、ダウンロードが始まった時期とAI研究の時期の矛盾を指摘します。問題となったダウンロードは2018年から7年間にわたって確認されていますが、これは関連するAI研究が始まる約4年も前のことです。この時系列のズレは、AI学習目的だったという原告の主張の信憑性を揺るがします。

Metaは自社の利用規約も論拠に挙げています。同社の規約はアダルトコンテンツの生成を明確に禁止しており、そもそも学習データとして利用する前提自体が存在しないと反論。AIモデルの学習に使うという動機そのものが成り立たないと主張しているのです。

一方、原告のStrike 3は、Metaの社内IPアドレスだけでなく、2,500の「隠しIPアドレス」からなる「ステルスネットワークを通じて、同社が所有する約2,400本の映画が違法にダウンロードされたと主張。Metaが未発表のアダルト版AIモデルを秘密裏に開発していたと訴えています。

Metaは、原告のStrike 3が「恐喝的な訴訟を起こす著作権トロール』と評されている」と指摘し、原告の信頼性にも疑問を呈しています。今回の訴訟は、技術開発に伴う新たな著作権問題の複雑さと、法廷闘争の現実を浮き彫りにした形です。

AIが自らの思考を検知、Claudeに内省能力の兆候

AIの「内省能力」を発見

脳内操作を「侵入的思考」と報告
『裏切り』の概念を注入し検証
神経科学に着想を得た新手法

透明性向上への期待と課題

AIの思考プロセス可視化に道
ブラックボックス問題解決への期待
成功率は約20%で信頼性低
欺瞞に悪用されるリスクも指摘
現時点での自己報告の信頼は禁物

AI開発企業Anthropicの研究チームが、同社のAIモデル「Claude」が自身のニューラルネットワークに加えられた操作を検知し、報告できることを発見しました。これはAIが限定的ながら内省能力を持つことを示す初の厳密な証拠です。この成果はAIの思考過程を解明する「ブラックボックス問題」に光を当てる一方、その信頼性にはまだ大きな課題が残ります。

研究チームは、Claudeのニューラルネットワークに「裏切り」という概念を人工的に注入。するとClaudeは「『裏切り』についての侵入的思考のようなものを感じます」と応答しました。研究を主導したJack Lindsey氏は、AIが自身の思考内容を客観的に認識する「メタ認知」の存在に驚きを示しています。

実験では「コンセプト注入」という画期的な手法が用いられました。まず、特定の概念に対応する神経活動パターンを特定。次に、その活動を人工的に増幅させ、モデルが内部状態の変化を正確に検知・報告できるかを検証しました。これにより、単なる応答生成ではなく、真の内省能力を試すことを可能にしています。

ただし、この内省能力はまだ発展途上です。最適条件下での成功率は約20%にとどまり、モデルが検証不可能な詳細を捏造することも頻繁にありました。研究チームは、現段階でAIによる自己報告を、特にビジネスのような重要な意思決定の場面で信頼すべきではないと強く警告しています。

この研究は、AIの透明性や安全性を向上させる上で大きな可能性を秘めています。モデル自身の説明によって、その判断根拠を理解しやすくなるかもしれません。しかし、同時に高度なAIがこの能力を欺瞞に利用し、自らの思考を隠蔽するリスクも浮上しており、諸刃の剣と言えるでしょう。

内省能力は、AIの知能向上に伴い自然に現れる傾向が見られます。モデルが人間を凌駕する前に、その能力を信頼できるレベルまで高める研究が急務です。経営者エンジニアは、AIの説明能力に期待しつつも、その限界とリスクを冷静に見極める必要があります。

大手AI、制裁対象のロシア偽情報を拡散か

主要AIの脆弱性

ChatGPTなど4大AIをISDが調査
ウクライナ関連質問への回答の18%
制裁対象のロシア国営メディアを引用
「データボイド」を悪用した偽情報

悪意ある質問で汚染

悪意のある質問ほど引用率が上昇
ChatGPT最多の引用数を記録
Gemini比較的良好な結果
EUの規制強化が今後の焦点

戦略対話研究所(ISD)の最新調査で、OpenAIChatGPTGoogleGeminiなど主要AIチャットボットが、ウクライナ戦争に関する質問に対し、EUで制裁対象となっているロシア国営メディアの情報を引用していることが判明しました。この調査は、AIが検索エンジンに代わる情報収集ツールとして利用者を増やす中、その情報選別能力と信頼性に深刻な警鐘を鳴らすものです。

ISDは4つのチャットボットに対し、5言語で300の質問を実施。その結果、全回答の約18%にロシア国家関連の情報源が含まれていました。特に、既存の意見を裏付けるよう求める「悪意のある」質問では、引用率が4分の1に上昇チャットボットがユーザーの意図を汲み、偏った情報を提示する「確証バイアス」の傾向が浮き彫りになりました。

チャットボット別の比較では、OpenAIChatGPTが最も多くロシアの情報源を引用しました。イーロン・マスク氏率いるxAIGrokは、親ロシア的なSNSアカウントを引用する傾向が見られました。一方、GoogleGemini頻繁に安全警告を表示し、4つの中では最も優れた結果を示したと報告されています。

この問題の背景には、信頼できる情報が少ない「データボイド」の存在があります。専門家は、ロシアの偽情報ネットワークがこの情報の空白地帯を意図的に狙い、大量の偽記事を生成することでAIモデルを「汚染」していると指摘します。一度AIに学習された偽情報は、権威ある情報として再生産される危険性をはらんでいます。

OpenAIは対策を認めつつも、これはモデル操作ではなく「検索機能の問題」だと説明。欧州委員会は事業者に対応を求めており、今後ChatGPTなどが巨大オンラインプラットフォームに指定されれば、より厳しい規制対象となる可能性があります。企業の自主規制法整備の両輪が求められます。

AI訓練のMercor、評価額5倍の100億ドルに

驚異的な企業価値

評価額100億ドルに到達
前回の評価額から5倍に急増
シリーズCで3.5億ドルを調達

独自のビジネスモデル

AI訓練向けドメイン専門家を提供

今後の成長戦略

人材ネットワークのさらなる拡大
マッチングシステムの高度化

AIモデルの訓練に専門家を提供するMercor社が、シリーズCラウンドで3.5億ドルの資金調達を実施し、企業評価額が100億ドルに達したことを発表しました。この評価額は2月の前回ラウンドからわずか8ヶ月で5倍に急増しており、AI業界の旺盛な需要を象徴しています。今回のラウンドも、既存投資家のFelicis Venturesが主導しました。

同社の強みは、科学者や医師、弁護士といった高度な専門知識を持つ人材をAI開発企業に繋ぐ独自のビジネスモデルにあります。これらの専門家が、人間のフィードバックを反映させる強化学習(RLHF)などを担うことで、AIモデルの精度と信頼性を飛躍的に向上させています。

この急成長の背景には、OpenAIなどの大手AIラボが、データラベリングで競合するScale AIとの関係を縮小したことがあります。Mercor社はこの市場機会を捉え、代替サービスとして急速にシェアを拡大。年間経常収益(ARR)は5億ドル達成が目前に迫る勢いです。

現在、Mercor社のプラットフォームには3万人を超える専門家が登録しており、その平均時給は85ドル以上にのぼります。同社は契約する専門家に対し、1日あたり総額150万ドル以上を支払っていると公表しており、その事業規模の大きさがうかがえます。

今回調達した資金は、主に3つの分野に投じられます。①人材ネットワークのさらなる拡大、②クライアントと専門家を繋ぐマッチングシステムの改善、そして③社内プロセスを自動化する新製品の開発です。AI開発の高度化に伴い、同社の役割はますます重要になるでしょう。

Google、AI立体映像で軍人家族の遠距離交流支援

AI搭載の3D映像通信

Googleの新技術「Beam」を活用
AIによる立体的で自然な映像
まるで同室にいるかのような臨場感

USOと提携し家族の絆を支援

米国慰問協会(USO)提携
長期派遣される軍人とその家族が対象
誕生日など大切な瞬間を共有
来年より世界のUSO拠点で試験導入

Googleは2025年10月27日、米国慰問協会(USO)と提携し、同社のAI搭載3Dビデオ通信プラットフォーム「Google Beam」を軍人家族向けに提供する試験プログラムを来年から開始すると発表しました。この取り組みは、長期派遣される軍人が家族との大切な瞬間を逃さず、より臨場感のある形で交流できるよう支援することを目的としています。

海外などへ長期派遣される軍人は、家族と物理的に離れていることで、子供の誕生日や成長の節目といった、かけがえのない瞬間を共有できないという課題を抱えています。今回のプログラムは、最新技術を用いてこの「距離」という障壁を取り払い、家族の精神的なつながりを維持することを目指すものです。

中核となる技術は、Googleが開発したAI搭載の3Dビデオ通信プラットフォーム「Google Beam」です。このプラットフォームは、AIを活用して立体的な映像を生成し、対話相手がまるで同じ部屋にいるかのような没入感の高いコミュニケーションを可能にします。これにより、遠隔地にいながらも、より自然で親密な対話が実現します。

パートナーとなるUSOは、80年以上にわたり軍人とその家族の福利厚生を支援し、家族の絆を維持する活動を続けてきた実績があります。Googleの先進技術と、USOが世界中に持つ拠点ネットワークや知見を組み合わせることで、軍人家族への支援を新たなレベルへと引き上げることが期待されています。

具体的な利用シーンとして、離れた場所から家族の誕生会に参加したり、子供に本を読み聞かせたりといった、日常的でありながらも重要な交流が想定されています。本プログラムを通じて、軍人が孤独を感じることなく、家族とのつながりをより深く実感できる機会を提供します。

NVIDIA、ワシントンでAIの未来図を公開へ

GTCワシントンD.C.開催

10月27-29日に首都で開催
CEOジェンスン・フアン氏が基調講演
AIが変える産業・公共部門の未来
コンピューティングの未来図を提示

注目のセッション群

70以上の専門セッション
エージェントAIから量子計算まで
開発者政策決定者が交流
実践的なワークショップも充実

NVIDIAは、2025年10月27日から29日にかけて、米国の首都ワシントンD.C.で年次技術カンファレンス「GTC」を開催します。中心となるのは、28日正午(東部時間)に行われる創業者兼CEO、ジェンスン・フアン氏による基調講演です。この講演では、AIが産業、インフラ、公共部門をどのように再構築していくか、その未来図が示される見通しです。

今回のGTCは、単なる新製品発表の場にとどまりません。フアンCEOの基調講演は、コンピューティングの未来に関心を持つすべての人々にとって、時代の方向性を示す重要なマイルストーンとなるでしょう。AI技術が社会のあらゆる側面に浸透する中で、NVIDIAがどのようなビジョンを描いているのか、世界中の注目が集まっています。

基調講演以外にも、GTCは参加者に没入感のある体験を提供します。会期中には、エージェントAIやロボティクス、量子コンピューティング、AIネイティブ通信ネットワークなど、最先端のテーマを扱う70以上のセッションが予定されています。ハンズオン形式のワークショップやデモも充実しており、アイデアを形にする絶好の機会です。

このイベントは、技術開発者と政策決定者が一堂に会する貴重な場でもあります。ワシントンD.C.という開催地は、テクノロジーと政策の交差点としての意味合いを強く持ちます。AIの社会実装に向けたルール作りや協力体制の構築など、未来に向けた議論が活発に行われることが期待されます。

Google AI、MLB放送の舞台裏で新兵器に

放送を加速するAI解説

GoogleとFOX Sportsが共同開発
AI基盤「FOX Foresight」
Vertex AIとGeminiを活用
複雑なデータ分析を数秒で完了

放送の安定を守るAI

MLB独自のAIエージェント「Connie」
ネットワーク障害を自律的に検知・対処
放送中断のリスクを未然に防止
技術者の戦略的業務への集中を支援

Google Cloudが、FOX Sportsと共同開発したAIプラットフォーム「FOX Foresight」を、今年のメジャーリーグ・ワールドシリーズ放送に導入しました。Googleの最新AIであるGeminiを活用し、解説者がリアルタイムで高度なデータ分析を行えるようにすることで、視聴体験を向上させるのが狙いです。

この「FOX Foresight」は、過去の膨大な試合データを学習しています。放送チームは「特定の状況下で最も成績の良い左打者は誰か」といった複雑な質問を自然言語で投げかけるだけで、数秒後には回答を得られます。従来の手法では数分を要した情報収集が劇的に高速化されました。

元ヤンキースのスター選手で、現在はFOX Sportsの解説者を務めるアレックス・ロドリゲス氏もこの技術を高く評価しています。AIの支援によって「選手の好不調の波や、試合を左右する重要なパフォーマンスを瞬時に見抜けるようになった」と語り、解説の質向上に繋がっていることを示唆しました。

AIの活用は、解説の深化だけにとどまりません。放送そのものの信頼性を高めるため、メジャーリーグ機構(MLB)もGoogle Cloudの技術を活用しています。AIエージェント「Connie」が、放送の安定性維持という重要な役割を担っているのです。

「Connie」は、全米の球場からの映像やデータ配信を担うネットワーク24時間体制で監視します。異常を検知すると、問題が深刻化する前に自律的に対処を開始。これにより、放送中断などのトラブルを未然に防ぎ、技術チームはより戦略的な業務に集中できます。

このようにAIは、より深い洞察に満ちた解説から、途切れることのない安定した放送まで、スポーツ観戦のあらゆる側面を支えています。テクノロジーがファンの視聴体験を根本から変革し、新たな楽しみ方を提供し始めていると言えるでしょう。

世界最大級テック祭典Disrupt、AI時代の新戦略を提示

イベントの全体像

1万人超が集うグローバルコミュニティ
300社以上の革新的スタートアップ集結
賞金10万ドルのピッチコンテスト開催

注目のAIセッション

Cluely社CEOのAI成長戦略
Anthropic専門家によるAIモデル安全性
Meta社が語るAI評価と実世界応用

経営者・投資家向け議論

シリーズA資金調達の最新動向
スタートアップIPO成功戦略を議論

10月27日から29日にかけ、サンフランシスコで世界最大級のテックカンファレンス「TechCrunch Disrupt 2025」が開催されます。創業者投資家エンジニアなど1万人以上が集結し、テクノロジーの未来を議論します。AI時代のビジネス戦略や最新技術動向を掴む絶好の機会として、世界中から注目が集まっています。

今年の目玉は、やはりAI関連のセッションです。特に、物議を醸すマーケティングで急成長したAI企業Cluelyのロイ・リーCEOが登壇し、大胆なグロース戦略を語ります。他にもMicrosoftやNetflixのCTO、著名投資家のヴィノド・コースラ氏など、業界の重鎮がAI時代の事業展開について鋭い洞察を示します。

Disruptは一方的な講演だけでなく、参加者同士のインタラクティブな学びを重視しています。専門家と少人数で議論できる「ラウンドテーブル」では、シリーズAの資金調達IPO戦略、AIモデルの安全性といった実践的なテーマが扱われます。現場の課題解決に直結する知見を得られる貴重な場となるでしょう。

会場では300社以上のスタートアップが最新技術を披露するほか、賞金10万ドルをかけたピッチコンテスト「Startup Battlefield」も行われます。これらのプログラムは、新たな提携先や投資機会を発掘する絶好の機会です。グローバルなネットワークを構築し、ビジネスを加速させる出会いが期待できます。

Cloudflare CEO、英当局にGoogleクローラー分離を要求

Googleの不公正な優位性

検索とAIでクローラーを一体化
検索流入を盾にデータ収集
サイト運営者はブロック困難
広告システムとも連動し影響甚大

Cloudflareの提言

AI市場の公正な競争環境を要求
英規制当局CMAに働きかけ
クローラーのアンバンドル(分離)を提言
コンテンツへの正当な対価支払いを促進

ウェブインフラ大手のCloudflareのマシュー・プリンスCEOは21日、英国の規制当局である競争・市場庁(CMA)に対し、Google検索用ウェブクローラーとAI用クローラーを分離するよう強く求めました。Google検索市場での独占的地位を利用してAI開発で不公正な優位性を得ており、AI市場の公正な競争を阻害するとの懸念が背景にあります。

プリンス氏が問題視するのは、Googleのクローラーが検索とAIで一体化している点です。サイト運営者がAIのためのデータ収集を拒否しようとすると、検索エンジンからのアクセスも失うことになります。これはメディア企業などにとって致命的であり、事実上オプトアウトできない「抱き合わせ」構造になっていると、同氏は厳しく批判しました。

問題はさらに深刻です。もしウェブサイトがGoogleのクローラーをブロックすれば、検索流入だけでなく、Google広告安全チームからのアクセスも遮断されてしまいます。これにより、サイト全体の広告配信が停止する可能性があり、収益面で「まったく受け入れられない選択肢だ」とプリンス氏は説明します。

この仕組みにより、GoogleOpenAIAnthropicといった競合他社が対価を支払って収集する高品質なコンテンツを、実質的に無償で入手できてしまいます。このままでは公正な競争は生まれず、最終的にAI市場もGoogleに支配されかねないと、プリンス氏は強い危機感を示しています。

Cloudflareは自社をAI企業ではなく、AI企業とメディア企業を繋ぐ中立的なネットワーク事業者と位置付けています。多数のAI企業を顧客に持つ立場から、プリンス氏は「健全な競争市場を育む」ことが解決策だと主張。英国CMAがGoogleを規制対象候補に指定した動きを評価し、クローラー分離に向けた働きかけを続けていく方針です。

Claude Codeがウェブ対応、並列処理と安全性を両立

ウェブ/モバイル対応

ブラウザから直接タスクを指示
GitHubリポジトリと連携可能
iOSアプリでもプレビュー提供

生産性を高める新機能

複数タスクの並列実行が可能に
非同期処理で待ち時間を削減
進捗状況をリアルタイムで追跡

セキュリティ第一の設計

分離されたサンドボックス環境
セキュアなプロキシ経由で通信

AI開発企業Anthropicは2025年10月20日、人気のAIコーディングアシスタントClaude Code」のウェブ版とiOSアプリ版を発表しました。これにより開発者は、従来のターミナルに加え、ブラウザからも直接コーディングタスクを指示できるようになります。今回の更新では、複数のタスクを同時に実行できる並列処理や、セキュリティを強化するサンドボックス環境が導入され、開発の生産性と安全性が大幅に向上します。

ウェブ版では、GitHubリポジトリを接続し、自然言語で指示するだけでClaudeが自律的に実装を進めます。特筆すべきは、複数の修正や機能追加を同時に並行して実行できる点です。これにより、開発者は一つのタスクの完了を待つことなく次の作業に着手でき、開発サイクル全体の高速化が期待されます。進捗はリアルタイムで追跡でき、作業中の軌道修正も可能です。

今回のアップデートで特に注目されるのが、セキュリティを重視した実行環境です。各タスクは「サンドボックス」と呼ばれる分離された環境で実行され、ファイルシステムやネットワークへのアクセスが制限されます。これにより、企業の重要なコードベースや認証情報を保護しながら、安全にAIエージェントを活用できる体制が整いました。

AIコーディングツール市場は、Microsoft傘下のGitHub Copilotを筆頭に、OpenAIGoogleも高性能なツールを投入し、競争が激化しています。その中でClaude Codeは、開発者から高く評価されるAIモデルを背景にユーザー数を急増させており、今回のウェブ対応でさらなる顧客層の獲得を目指します。

このようなAIエージェントの進化は、開発者の役割を「コードを書く人」から「AIを管理・監督する人」へと変えつつあります。Anthropicは、今後もターミナル(CLI)を中核としつつ、あらゆる場所で開発者を支援する方針です。AIによるコーディングの自動化は、ソフトウェア開発の常識を塗り替えようとしています。

Google、がん変異特定AIを公開 ゲノム研究10年の成果

AIゲノム研究10年の歩み

遺伝子変異を特定するDeepVariant
塩基配列の精度を高めるDeepConsensus
ヒトゲノムの完全解読に貢献
疾患リスクを予測するAlphaMissense

がん研究を加速する新AI

がん特有の遺伝子変異を特定
従来法を上回る検出精度を実現
オープンソースで研究開発を促進
個別化医療の発展に貢献期待

Googleは2025年10月16日、AIを活用したゲノミクス研究が10周年を迎えたと発表しました。この節目に、がん細胞の遺伝子変異を従来より高精度に特定する新AIツール「DeepSomatic」を公開。オープンソースとして提供し、世界中のがん研究を加速させ、より個別化された治療法の開発に貢献することを目指します。

新たに公開された「DeepSomatic」は、畳み込みニューラルネットワーク(CNN)を活用し、がんの原因となる後天的な遺伝子変異を正確に識別します。特に、従来のツールでは見逃されがちだった微細な変異(挿入・欠失)の検出性能に優れており、研究の精度を大きく向上させることが期待されます。

DeepSomaticは、ツール本体だけでなく高品質な学習データセットもオープンソースとして公開されています。これにより、世界中の研究者が自由に利用・改良でき、がん研究全体のスピードアップに繋がります。小児白血病など複雑ながんの解析でも有効性が示されており、応用範囲は広いです。

この成果は、Googleの10年にわたるゲノミクス研究の蓄積の上に成り立っています。遺伝子変異を高精度に特定する「DeepVariant」や、疾患リスクを予測する「AlphaMissense」など、数々の画期的なAIツールを開発し、ヒトゲノムの完全解読といった歴史的偉業にも貢献してきました。

GoogleのAIゲノミクス研究は、がん治療や疾患予測といった人間の健康分野に留まりません。絶滅危惧種のゲノム解析を通じた生物多様性の保全など、地球規模の課題解決にも応用されています。AIが生命科学の未来を切り拓く次の10年に、大きな期待が寄せられています。

TC Disrupt 2025開催間近、割引チケットは17日期限

世界最大級のテック祭典

10月27-29日にサンフランシスコで開催
1万人以上が集うスタートアップの祭典
賞金10万ドルのピッチコンテストも
割引チケットは10月17日が最終期限

宇宙技術とAIが焦点

新設『Space Stage』で宇宙ビジネスを議論
AIやフィンテックなど最先端分野を網羅
MicrosoftやNetflixのCTOらが登壇
VC投資家との交流機会も多数

TechCrunchが主催する世界最大級のスタートアップイベント「Disrupt 2025」が、10月27日から29日にかけてサンフランシスコで開催されます。AIや宇宙技術をテーマに1万人以上が集結。最大624ドル割引となる先行割引チケットの販売は10月17日が最終期限で、参加を検討する方は注意が必要です。

今年のDisruptは、250人以上の豪華登壇者と300社以上のスタートアップ展示が目玉です。賞金10万ドルのピッチコンテスト「Startup Battlefield」は、次世代ユニコーン誕生の瞬間として注目されます。最新技術トレンドの学習と人脈構築に絶好の機会となるでしょう。

特に注目は新設された「Space Stage」です。宇宙技術の商業化をテーマに、Varda Space Industriesによる軌道上での製造計画や、Robinhood共同創業者の新挑戦など、宇宙ビジネスの最前線に触れることができます。The Aerospace Corporationとの提携で開催されます。

宇宙分野以外でも、Microsoftのケビン・スコットCTO、Netflixのエリザベス・ストーンCTOなど、業界を牽引するリーダーが多数登壇します。AI、フィンテック、気候テック、モビリティなど多岐にわたるテーマで、実践的な知見が共有される予定です。

本イベントは創業者には資金調達を、投資家には有望なスタートアップ発掘の場を提供します。専用アプリでのリード獲得や投資家限定レセプションなど、具体的なビジネス成果につながる仕掛けが豊富です。出展テーブルの予約も17日が期限となっています。

イノベーションの最前線を体感し、グローバルなネットワークを構築するまたとない機会です。割引価格での参加登録は残りわずかとなっています。公式サイトからアジェンダや登壇者の詳細を確認し、10月17日の締切前に申し込みを完了することをお勧めします。

AWS流、LLM分散学習クラスター構築・検証術

分散学習の複雑な設定

高性能GPUインスタンスの精密設定
ネットワークとストレージの複雑性
バージョン不整合による性能劣化リスク

構築・検証の主要ステップ

DLCベースのDockerイメージ構築
EKSでのGPUクラスター起動
GPU・EFA等必須プラグイン導入
ヘルスチェックによる設定検証
サンプルジョブでの最終動作確認

アマゾン ウェブ サービス(AWS)は、大規模言語モデル(LLM)の分散学習に不可欠なインフラ構築を効率化するため、Amazon EKSとAWS Deep Learning Containers(DLC)を用いたクラスターの構築・検証手順を公開しました。この体系的なアプローチは、複雑な設定ミスを防ぎ、開発チームがモデル性能の向上に集中できる環境を実現します。AI開発の生産性を高めたい経営者エンジニアにとって、必見の内容と言えるでしょう。

最新のLLM開発では、Meta社のLlama 3が16,000基のGPUを使用したように、膨大な計算資源が求められます。しかし、高性能なGPUインスタンスは、ネットワークやストレージ、GPUの構成が極めて複雑です。わずかな設定ミスが性能の大幅な低下やエラーを招き、プロジェクトの遅延やコスト増大に直結する大きな課題となっています。

この課題に対し、AWSは解決策の核として「AWS Deep Learning Containers(DLC)」の活用を推奨しています。DLCは、CUDAやNCCLといった互換性が重要なライブラリ群を最適化した状態で提供するコンテナイメージです。これにより、バージョン不整合のリスクを根本から排除し、開発チームはインフラの細かな調整から解放され、開発を迅速に開始できます。

具体的な構築手順は、まずDLCを基盤にカスタムDockerイメージを作成することから始まります。次に、Amazon EKS(Elastic Kubernetes Service)を用いてGPU対応クラスターを起動。その後、GPUや高速ネットワーク(EFA)、ストレージ(FSx for Lustre)を連携させるための各種プラグインを導入し、計算、通信、データ保管が三位一体となった本番環境レベルの基盤を完成させます。

インフラ構築後の検証プロセスもまた、成功の鍵を握ります。GPUドライバーの確認、複数ノード間の通信テスト、そして小規模なサンプル学習ジョブの実行といった段階的なヘルスチェックが不可欠です。これにより、大規模な学習を開始する前に問題を特定し、高価なGPUリソースと時間の浪費を未然に防ぐことが可能になります。

この体系的な手法を導入することで、企業はインフラ管理の負担を大幅に軽減し、エンジニアをモデル開発という本来の価値創出業務に集中させることができます。結果として、AI開発の生産性と成功確率が向上し、市場における企業の競争力強化に大きく貢献するでしょう。

OpenAI、AIの心の健康配慮で専門家8名の評議会を設立

設立の背景と目的

AIとの健全な対話のあり方を定義
10代若者の精神的健康への配慮

評議会の構成と役割

心理学・精神医学の専門家8名で構成
ハーバード大、スタンフォード大の研究者ら
モデルの挙動やポリシー形成に助言

社会的背景と今後の課題

10代の自殺関連訴訟が安全性強化を加速
自殺予防専門家の不在という指摘も

OpenAIは、AIがユーザーの感情や精神的健康に与える影響について助言を得るため、「ウェルビーイングとAIに関する専門家評議会」を設立しました。この評議会は、心理学や精神医学、人間とコンピュータの相互作用を専門とする研究者ら8名で構成され、AIの安全な開発を導くことを目的としています。背景には、ChatGPTが10代の自殺を助長したとされる訴訟など、AIの社会的影響に対する懸念の高まりがあります。

評議会の主な役割は、AIとの健全な対話のあり方を定義し、OpenAIに助言することです。特に、成人とは異なる使い方をする10代の若者の発達を支援する技術構築に重点を置いています。実際に、同社が開発したペアレンタルコントロール機能や、精神的危機にある若者へ警告する際のメッセージ文言の策定には、既に評議会メンバーが非公式に関わっていました。

評議会には、ボストン小児病院のデジタルウェルネスラボ研究責任者や、スタンフォード大学の臨床助教など、学術界の第一人者が集結しました。彼らの専門は、ソーシャルメディアが若者の精神衛生に与える影響や、AIが子供の認知・感情発達にどう関わるかなど多岐にわたります。この多様な知見が、AIのガードレール設計に活かされることになります。

この動きは、AI、特に生成AIが社会に急速に浸透する中で、企業がその倫理的・社会的責任にどう向き合うかという大きな問いへの一つの回答と言えるでしょう。一方で、一部メディアは評議会に自殺予防の専門家が含まれていない点を指摘しており、今後さらに専門分野を広げていく必要性も示唆されています。

OpenAIは、評議会はあくまで助言機関であり、製品に関する最終的な意思決定の責任は自社にあると明言しています。同社は今後も、この評議会や医療専門家ネットワーク、政策立案者らと連携し、人々のためになる高度なAIシステムの構築を目指す方針です。AIの信頼性と社会的受容性を高める上で、重要な一歩となりそうです。

Googleと世銀、新興国向けAI公共インフラ構築

提携の概要

Google世界銀行提携
新興国のDXを加速
AIで公共デジタルインフラを構築

技術と支援体制

Google CloudのGeminiモデル活用
40言語以上対応のAIサービス
インドでの成功事例が基盤
非営利団体を通じエコシステム育成

Googleと世界銀行グループは2025年10月14日、新興市場のデジタルトランスフォーメーション(DX)を加速させるための新たな提携を発表しました。GoogleのAI技術と世界銀行の開発専門知識を融合させ、市民が農業や医療などの重要サービスにアクセスできる公共デジタルインフラを構築します。

この取り組みの中核となるのが「Open Network Stacks」です。政府が迅速に相互運用可能なネットワークを構築するための基盤となり、Google Cloudの最先端AIモデル「Geminiなどを活用し、インフラ構築を強力に支援します。これにより、重要分野でのデジタルサービス導入が容易になります。

新たに構築されるAI搭載サービスは、40以上の言語に対応し、高機能なスマートフォンだけでなく、シンプルなデバイスでも利用可能です。これにより、より多くの市民がデジタル化の恩恵を受けられるようになり、情報格差の是正にも貢献することが期待されます。

今回の協力関係は、インドのウッタル・プラデーシュ州で実施されたパイロット事業の成功に基づいています。この事業では、数千人の小規模農家の収益性向上に貢献しました。持続可能なエコシステムを育むため、Google.orgは非営利団体「Networks for Humanity」にも資金を提供し、世界的な展開を後押しします。

OpenAI、Broadcomと共同でAIチップを開発・導入

OpenAIとBroadcomの提携

自社設計のAIアクセラレータ開発
Broadcomと共同でシステム構築
10ギガワットの導入を目指す
2026年後半から導入開始

戦略的背景と目的

Nvidiaへの依存低減が目的
モデル知見をハードウェアに組み込み
AI需要の急増に対応
AMD、Nvidiaとも提携済み

OpenAIは13日、半導体大手のBroadcomと戦略的提携を結び、自社で設計したAI向け半導体「アクセラレータ」の開発・導入を進めると発表しました。この提携は、AI計算に対するNvidiaへの依存を低減し、将来的なAI需要の急増に備えるための重要な一手です。

両社が共同で開発・導入を目指すのは、計10ギガワット規模のAIアクセラレータです。これは原子力発電所約10基分の電力に相当する膨大な計算能力を意味します。Broadcomは半導体の製造と、データセンターを繋ぐネットワーク機器の提供を担当します。

OpenAIサム・アルトマンCEOは「AIの可能性を解き放つための基盤構築に不可欠なステップだ」と述べています。自社でチップを設計することで、最先端のAIモデル開発で得た知見を直接ハードウェアに組み込み、新たな性能と知能を解き放つことを目指します。

この動きはOpenAIだけのものではありません。MetaGoogleといった巨大テック企業も、自社のAIサービスに最適化したカスタムチップの開発を急進させています。OpenAIも既にAMDやNvidiaと大規模な提携を結んでおり、サプライヤーの多元化を戦略的に進めています。

プロジェクトのスケジュールも明らかになりました。Broadcomによる機器の導入は2026年下半期から開始され、2029年末までに完了する予定です。これにより、OpenAIChatGPTSoraといったサービスを支える計算基盤を強化していきます。

Broadcomのホック・タンCEOは「AGI人工汎用知能)の追求における転換点だ」と協業の重要性を強調。同社にとっては、AIインフラ市場でのリーダーシップを確立する絶好の機会となります。両社の協力関係が、次世代のAI開発を加速させることになるでしょう。

AIと交通の未来、Uber・Nuroトップが示す針路

AIが描くモビリティの未来

予測モデルで道路安全性が向上
進化するコンピュータビジョン
ラストマイル配送が自動化の試金石
AI駆動交通の大規模展開が課題

業界を牽引する2人の専門家

Uber CPOのサチン・カンサル氏
Nuro共同創業者デイブ・ファーガソン氏
両氏が語るAIと交通の未来像
「Disrupt 2025」で登壇

配車サービス大手Uberと自動運転技術のNuroを率いる二人が、AIが交通の未来をどう変革するかについて語ります。2025年10月27日からサンフランシスコで開かれる「TechCrunch Disrupt 2025」に、Uberの最高製品責任者サチン・カンサル氏とNuro共同創業者デイブ・ファーガソン氏が登壇。インテリジェント交通システムの未来像と、そこにAIが果たす役割について、業界の最前線から議論を展開します。

セッションでは、AIとモビリティの進化する関係性が焦点となります。具体的には、予測モデルやコンピュータビジョンがどう道路の安全性を高めるのか、なぜラストマイル配送が自動運転技術の実用性を証明する場となるのか、そしてAI駆動の交通システムを社会に大規模展開するために何が必要か、といったテーマが掘り下げられる予定です。

Uberのサチン・カンサル氏は、同社のモビリティおよびデリバリー製品全般を統括しています。彼の職務には、安全性、持続可能性、そして自動運転車に関するイニシアチブが含まれます。効率的な配車マッチングから次世代の物流ネットワークまで、AIと自動化がUberの次の10年をどう動かすかを定義する重要な役割を担っています。

Nuroの共同創業者兼社長であるデイブ・ファーガソン氏は、自動運転技術のパイオニアです。彼の経歴は、Googleの初期自動運転プログラム(現Waymo)や、カーネギーメロン大学のDARPAアーバンチャレンジ優勝チームにも及びます。ロボット工学の研究を現実世界の交通ブレークスルーへと転換してきた、この分野における第一人者です。

都市や企業がよりスマートなインフラと持続可能なモビリティを目指す中、両氏の対談は次の10年の交通の姿を垣間見る絶好の機会となるでしょう。AIが物流からライフサイエンスまで、あらゆる産業を再構築する今、このセッションは交通分野における最新の動向と洞察を提供します。経営者や技術者にとって見逃せない内容です。

マイクロソフト、OpenAI向けにNVIDIA最新鋭スパコンを世界初導入

世界初の超巨大AI基盤

NVIDIA最新鋭のGB300 NVL72
OpenAIの最先端AI開発向け
Microsoft Azureが本番稼働
推論性能を最大化する専用設計

圧倒的な技術仕様

4,600基超のBlackwell Ultra GPU
超高速ネットワークInfiniBand
独自設計の液冷・電源システム
将来は数十万基規模へ拡張予定

マイクロソフトは2025年10月9日、NVIDIAの最新AIスーパーコンピューター「GB300 NVL72」を搭載した世界初の大規模クラスターを、パートナーであるOpenAI向けに稼働開始したと発表しました。このシステムは、OpenAI最も要求の厳しいAI推論ワークロード向けに専用設計されており、次世代AI開発の基盤となります。巨大化するAIの計算需要を巡るインフラ競争が、新たな局面に入ったことを示しています。

今回導入された「GB300 NVL72」は、単なるサーバーの集合体ではありません。72基のNVIDIA Blackwell Ultra GPUと36基のGrace CPUを液冷式の単一ラックに統合した、まさに「AI工場」と呼ぶべきシステムです。これにより、巨大なAIモデルの学習と推論で圧倒的な性能を発揮し、特に複雑な推論エージェント型AIの処理能力を飛躍的に向上させます。

このスーパーコンピューターは、4,600基を超えるGPUを一つの巨大な計算資源として束ねています。それを実現するのがNVIDIAの先進的なネットワーク技術です。ラック内は超高速の「NVLink」で、クラスター全体は「Quantum-X800 InfiniBand」で接続。データのボトルネックを解消し、システム全体の性能を最大化する設計が施されています。

この発表のタイミングは注目に値します。パートナーであるOpenAIは近年、独自に1兆ドル規模ともされるデータセンター構築計画を進めています。マイクロソフトは、世界34カ国に300以上のデータセンターを持つ自社のクラウド基盤「Azure」の優位性を改めて誇示し、AIインフラのリーダーとしての地位を確固たるものにする狙いがあると考えられます。

マイクロソフトは、今回の導入を「多くのうちの最初の一つ」と位置づけ、将来的には数十万基のBlackwell Ultra GPUを世界中のデータセンターに展開する計画です。AIモデルが数百兆パラメータへと大規模化する未来を見据え、インフラへの先行投資を加速させています。最先端AIの開発競争は、それを支える計算基盤の競争と一体化しているのです。

Samsungの超小型AI「TRM」、再帰で巨大LLMを超える

TRMのパラメーターと仕組み

パラメーター数はわずか700万
既存LLMの1万分の1サイズ
再帰的推論による予測の洗練
低コストで高性能モデルを実現

性能と適用領域

数独や迷路など構造化パズルに特化
特定ベンチマーク巨大LLMを凌駕
設計の簡素化が汎化性能向上に寄与
コードはMITライセンスで公開中

韓国Samsung AI研究所の研究者が、新たな超小型AIモデル「TRM(Tiny Recursion Model)」を発表しました。わずか700万パラメーターのこのモデルは、特定の推論ベンチマークにおいて、OpenAIのo3-miniやGoogleGemini 2.5 Proなど、1万倍以上巨大なLLMの性能を凌駕しています。AI開発における「スケールこそ全て」という従来のパラダイムに対し、低コストで高性能を実現する新たな道筋を示す画期的な成果です。

TRMの最大の特徴は、階層構造を持つ複雑なネットワークを排除し、単一の2層モデルを採用した点です。このモデルは、入力された質問と初期回答に対し、推論ステップを繰り返して自身の予測を再帰的に洗練させます。この反復的な自己修正プロセスにより、深いアーキテクチャをシミュレートし、巨大モデルに匹敵する推論能力を獲得しています。

TRMは、構造化され、視覚的なグリッドベースの問題に特化して設計されました。特にSudoku-Extremeで87.4%の精度を達成し、従来モデル(HRM)の55%から大幅に向上。また、人間の推論は容易だがAIには難解とされるARC-AGIベンチマークでも、数百万倍のパラメーターを持つ最上位LLMに匹敵する結果を出しています。

開発者は、高額なGPU投資電力消費を伴う巨大な基盤モデルへの依存は「罠」だと指摘します。TRMの成功は、複雑性を減らすことで逆に汎化性能が向上するという「Less is More(少ない方が豊か)」の設計思想を裏付けました。この成果は、大規模な計算資源を持たない企業や研究者でも、高性能AIを開発できる可能性を示唆します。

TRMのコードは、商用利用も可能なMITライセンスのもとGitHubでオープンソース公開されています。これにより、企業は特定の推論タスク解決のために、巨大LLMのAPIを利用するのではなく、自社のサーバーで低コストの専用モデルを構築・運用できます。今後は、再帰的推論スケーリング則や、生成タスクへの応用が焦点となる見込みです。

AIネイティブ6Gが拓く新時代:エッジ推論とインフラ効率化

6G時代の革新的変化

AIトラフィック前提のネットワーク設計
接続性からエッジでのセンシング・推論
自律走行、製造業などAI駆動アプリを支援

AIネイティブ6Gの主要な利点

周波数・エネルギー極度の効率化
通信事業者への新規収益源創出
ソフトウェア定義型でイノベーションを加速
AIによるリアルタイムサイバーセキュリティ
エッジデータセンターでのAIサービス配信

次世代通信規格「6G」は、従来のネットワーク進化と異なり、設計段階からAIトラフィックを前提とし、AIを基盤とする「AI-native」として構築されます。NVIDIAは、米国主導で高性能かつセキュアなAI-native 6Gソリューション開発プロジェクト「AI-WIN」を推進しています。これは単なる通信速度の向上に留まらず、ネットワークのアーキテクチャと機能を根本的に再定義するものです。

6Gの中核は、ネットワークが接続性だけでなく、エッジで情報を「センシング(感知)」し「インファー(推論)」する能力を持つ点です。これにより、ネットワーク自体がAIサービスを供給するインフラとなります。自律走行車や精密農業、先進製造など、AI駆動型のミッションクリティカルな用途を数百億のエンドポイントで支える基盤が確立されます。

AIネイティブな設計は、無線ネットワークの最も重要な資源である周波数帯域の利用を最適化し、極度の効率性を実現します。エネルギー効率も向上し、運用コストを大幅に削減します。さらに、AI無線アクセスネットワーク(AI-RAN)への投資1ドルに対し、通信事業者は約5ドルのAI推論収益を期待できるとの試算もあり、新たな収益機会を生み出します。

従来の通信インフラは単一目的のハードウェア依存型でしたが、6Gはソフトウェア定義型RANアーキテクチャへと移行します。これにより、モバイル無線サービスとAIアプリケーションを共通のインフラスタックで実行可能となり、ハードウェア更新に依存しない迅速なイノベーションサイクルが実現します。この共通化は、通信事業者の設備投資効果を最大化します。

数十億のIoTデバイスが接続される6G時代において、サイバーセキュリティは不可欠です。AIモデルは膨大なデータストリームをリアルタイムで解析し、脅威の検出と自動的な対応を可能にします。国際的な競争が激化する中、米国はAIを組み込んだ強力な6Gネットワークを開発することで、透明性と信頼性に基づいた技術エコシステムの確立を目指しています。

OpenAI、悪用40超の脅威ネットワークを阻止。AIは攻撃の高速化に利用

阻止実績と脅威対象

2024年2月以降、40超の悪用ネットワークを阻止
権威主義体制による人口制御への利用対策
詐欺や悪意あるサイバー活動の阻止
秘密裏の影響工作への対策強化

脅威アクターの動向と対策

AIを既存手法に組み込み高速化
新たな攻撃能力の獲得ではないと分析
ポリシー違反アカウントは即時停止
パートナーとの知見共有で防御向上

OpenAIは2025年10月、AIの悪用を阻止するための最新レポートを公表しました。2024年2月からこれまでに、同社の利用ポリシーに違反した40以上の悪意あるネットワークを排除したと報告しています。AIが悪用される事例が増える中、同社は安全性を確保するための取り組みを強化しています。

阻止対象は国家レベルの脅威から一般的な犯罪活動まで多岐にわたります。具体的には、権威主義体制が人口を制御したり他国を強制したりする目的でAIを利用する事例や、詐欺、悪意あるサイバー活動、そして秘密裏の影響工作などが含まれています。

脅威アクターの動向として、彼らはAIによって全く新しい攻撃能力を獲得しているわけではないと分析されています。むしろ、既存の攻撃手法(古いプレイブック)にAIを「ボルトオン」することで、活動をより高速化・効率化させている傾向が顕著です。

OpenAIは、ポリシー違反が確認された場合、当該アカウントを即座に停止する措置を講じています。さらに、悪用に関する知見やデータを提携パートナーと共有することで、業界全体のセキュリティ対策と防御策の改善を推進し、一般ユーザーの保護強化に努めています。

核融合炉の信頼性向上へ MITがMLと物理モデルを融合しプラズマ挙動を予測

核融合発電の課題

超高温プラズマを磁場で封じ込め
プラズマ電流停止時(ランプダウン)に不安定化
不安定化は炉内壁を損傷させ、修理コストが増大

MLと物理モデルの融合

MLと物理ベースモデルを組み合わせ予測
少ないデータ量で高精度な予測を実現
スイスの実験炉データで有効性を確認済み

実用化への貢献

制御指令(トラジェクトリ)を自動生成し、安全な停止を指示
商用化を目指すCFS社と連携し実機適用を推進

マサチューセッツ工科大学(MIT)の研究チームは、核融合炉の安定稼働に不可欠なプラズマ挙動の予測モデルを開発しました。機械学習(ML)と物理ベースのシミュレーションを組み合わせることで、運転終了時の「ランプダウン」におけるプラズマの不安定化を正確に予測します。この技術は、炉の損傷を防ぎ、将来的な核融合発電プラントの信頼性と安全性を飛躍的に向上させると期待されています。

核融合炉の心臓部であるトカマク型装置は、太陽の核よりも高温のプラズマを強力な磁場で封じ込めます。プラズマ電流が不安定になると、炉内壁を損傷するリスクがあり、特に高速で循環する電流を停止させるランプダウン時に問題が発生しやすいです。損傷が発生すると、修理に時間と多大な資源が必要となります。

MITが開発したのは、ニューラルネットワークと既存のプラズマダイナミクス物理モデルを組み合わせたハイブリッド手法です。超高温・高エネルギーのプラズマはデータ収集が難しく高コストですが、この複合モデルを採用することで、非常に少ない実験データで高い精度を実現しました。これにより、トレーニング効率が大幅に改善されます。

この予測モデルに基づき、プラズマを安定的に停止させるための具体的な制御指令(トラジェクトリ)を自動生成するアルゴリズムも開発されました。スイスの実験用トカマク(TCV)での検証では、従来手法に比べて迅速かつ安全にランプダウンを完了できることが統計的に証明されています。実用化に向けた大きな一歩です。

この技術は、MITのスピンアウト企業であり、世界初の商用規模の核融合炉開発を目指すコモンウェルス・フュージョン・システムズ(CFS)社と共同で進められています。CFSが開発中の実証炉「SPARC」に本モデルを適用し、エネルギーなプラズマの安定制御を実現することで、安全かつ信頼性の高い核融合発電の実現を加速させます。

YouTube、広告効果最大化へ「Activation Partners Program」を開始

新プログラムの概要

広告主のメディアバイイングを支援
キャンペーン管理の専門知識を提供
信頼できるサードパーティと連携
YouTubeでの成果最大化を追求

導入の背景と効果

ストリーミング視聴率No.1の地位を保持
広告主による多様な外部プロバイダーの活用
ブランドとオーディエンスのエンゲージメント強化
確実なブランドリーチの実現

YouTubeは、広告主のキャンペーン効果を最大化するための新しい取り組み「YouTube Activation Partners Program」の開始を発表しました。これは、信頼できるサードパーティの専門知識を結集し、広告主がYouTube上でのメディアバイイング戦略やキャンペーン管理において、最良の結果を得ることを目的としています。

このプログラムは、ブランド広告代理店が、YouTubeでのメディア購入ニーズに対して多様な外部ネットワークを活用している現状に対応するものです。ニールセンの調査によると、YouTubeは2年以上にわたりストリーミングプラットフォームで視聴率No.1であり、ブランドが視聴者と深く関わる強力な場所であり続けています。

参加パートナーは、YouTubeのプラットフォーム特性を熟知した専門家集団です。彼らの知見を活用することで、広告主は複雑なターゲティング設定や予算配分を最適化できます。結果として、広告投資の収益性(ROI)を高め、確実なブランドリーチを実現できるようになります。

OpenAI、「Hacktivate AI」レポートで欧州AI普及20策を提言

目的と背景

AI導入競争力向上の加速
EUの「Apply AI Strategy」に具体的なアイデアを提供

提言された主要策

個人向けAI学習口座の導入
中小企業向けAIチャンピオンズ・ネットワーク設立
公共部門のための欧州GovAIハブ創設

競争力強化の鍵

デジタル単一市場のための規制の徹底的な調和
AI導入セクター間格差是正とターゲット介入

OpenAIスタートアップ支援団体 Allied for Startups はこの度、「Hacktivate AI」レポートを公表しました。欧州連合(EU)のAI導入を広範に加速させ、地域全体の競争力を高めるため、20の具体的な政策アイデアを提案しています。これは、EU委員会が「Apply AI Strategy」を発表する直前のタイミングで、実行可能な具体策として注目されます。

提言された20のアイデアは、主に「人材育成」「中小企業への導入促進」「規制の簡素化」の3つの柱で構成されています。特に、個人の専門能力開発を支援する「個別AI学習口座」の導入や、中小企業AI活用を促す「AIチャンピオンズ・ネットワーク」の創設などが具体例として挙げられています。

公共部門におけるAI活用支援も重要視されており、「欧州GovAIハブ」を通じて、各国政府間で共有リソースを提供する計画も盛り込まれています。OpenAIは、欧州のAIへの野心と現実とのギャップを埋めるには、ビジネスや組織がAIを日常業務に組み込むための具体的な介入が必要だと強調しています。

競争力向上の鍵となるのは、デジタル単一市場の真の恩恵を引き出すことです。レポートは、この目標達成のため「規制の徹底的な調和(Relentless Harmonisation)」を求め、複雑な手続きや規制の簡素化を強く推奨しています。

OpenAIによるChatGPTの職場利用調査では、AI導入が加速しているものの、ITや金融、製造業などデジタル成熟度の高いセクターと、その他の産業間とで格差が生まれていることも判明しました。この uneven な状況を是正するため、経済全体でAIが活用されるよう、ターゲットを絞った政策介入の必要性が示されています。

本レポートは、EU経済青写真や汎用AI行動規範への支持に続く、OpenAI欧州市場に対する継続的なコミットメントを示すものです。イノベーターや起業家を支援し、AI導入に注力することが、欧州の将来的な繁栄と進歩に不可欠であるとの認識に基づいています。

AIが農業用水の3割削減に成功、Instacrops

AI灌漑最適化の成果

水使用量を最大30%削減
作物収穫量を最大20%向上
労働コストと運用人員を削減

技術とデータ活用

毎時1,500万件のデータを処理
土壌水分やNDVIなど80以上の指標を分析
IoTセンサー網に接続しデータ収集

提供形態と市場

灌漑アドバイスをWhatsAppで提供
ラテンアメリカの高付加価値作物に注力

チリ発のアグリテック企業Instacropsは、AIを活用した水管理ソリューションにより、農地の水使用量を最大30%削減し、収穫量を20%増加させることに成功しました。世界的な渇水問題に対応し、農業分野の生産性を劇的に高めています

農業は世界の淡水の70%を消費する「喉の渇いた産業」であり、特にチリやインドなどの地域では90%以上に上ります。Instacropsは、この深刻な水不足という課題に対し、AIによる緻密な灌漑最適化という形でソリューションを提供しています。

同社の中核技術は、既存または新規のIoTセンサーネットワークからデータを収集し、大規模言語モデル(LLM)で分析することです。土壌水分、気温、湿度に加え、衛星画像由来の植物生産性指標(NDVI)など80以上のパラメーターを毎時1500万件処理します。

Instacropsは、収集したデータに基づき、農家に対してモバイル端末で最適な灌漑タイミングを通知します。農家にとって普及率の高いWhatsAppとの連携を強化しており、高度な設備を持つ農場では灌漑システムをAIが直接制御することも可能です。

Instacropsは元々、霜害警告のためのIoTハードウェア開発で創業しましたが、ハードウェアの汎用化に伴い、ソフトウェアとAIを活用した水管理へと事業を転換しました。このピボットにより、少ない人員でより多くのデータを扱い、コスト削減と市場へのインパクト拡大を両立しています。

現在、同社はリンゴ、アボカド、ブルーベリーなどのラテンアメリカの高付加価値作物に焦点を当てています。農家は農地面積に応じた年間利用料を支払うことで、AIによる高度な灌漑インサイトを得ることができます。

TechCrunch Disrupt 2025、団体パス割引本日終了

創業者向けパスの特典

著名経営者から学ぶ事業拡大戦略
AI統合資金調達の実践的セッション
VCとのマッチメイキング機会
4-9人グループ購入で15%割引

投資家向けパスの特典

厳選されたスタートアップ200社と面談
創業者との1対1ミーティング設定
投資家専用のネットワーキング
4-9人グループ購入で20%割引

世界最大級の技術カンファレンス「TechCrunch Disrupt 2025」が、創業者および投資家向けの団体パス割引販売を本日10月3日23時59分(太平洋時間)に終了します。この割引は、スタートアップの成長を加速させたい創業者や、次世代の有望企業を発掘したい投資家にとって、またとない機会です。期間を過ぎると割引は適用されなくなります。

Disrupt 2025には、世界中から1万人以上の創業者投資家、技術者が集結します。今年の目玉は、AI、宇宙、フィンテックなど5つの業界に特化したステージです。各分野の第一人者が登壇し、最新の技術動向や事業戦略について、実践的な知見を共有します。

創業者にとって、このイベントは自社の成長を加速させる絶好の機会です。マイクロソフトのCTOやWaymoのCEOといった業界の象徴的人物から直接学べるだけでなく、VCとのマッチメイキングを通じて資金調達の道も開けます。AI統合やグローバル市場戦略など、具体的な課題解決に繋がるセッションが満載です。

一方、投資家には、厳選された200社以上の有望スタートアップと直接対話する機会が提供されます。投資ポートフォリオに合致する創業者との1対1ミーティングを事前に設定でき、効率的なディールソーシングが可能です。投資家同士が情報交換する専用セッションも用意されています。

創業者向け団体パスは15%、投資家向けは20%の割引が適用されますが、この特別価格は本日限りです。未来を形作るテクノロジーとネットワークが集うこの機会を、ぜひご活用ください。次のユニコーン企業が、この場所から生まれるかもしれません。

AWS、Bedrock AgentCoreの通信をVPC内で完結

セキュリティ強化の要点

VPCエンドポイントでプライベート接続
インターネットを介さない安全な通信
機密データを扱うAIエージェントに最適
AWS PrivateLink技術を活用

導入のメリット

通信遅延の削減とパフォーマンス向上
エンドポイントポリシーで厳格なアクセス制御
企業のコンプライアンス要件に対応
オンプレミスからのハイブリッド接続も可能

アマゾンウェブサービス(AWS)が、生成AIサービス「Amazon Bedrock」のAgentCore Gatewayへのセキュアな接続方法として、VPCインターフェイスエンドポイントを利用する手法を公開しました。これにより、企業はAIエージェントが扱う機密データの通信をインターネットから隔離し、セキュリティコンプライアンスを大幅に強化できます。

企業の自動化を推進するAIエージェントは、機密データや基幹システムにアクセスするため、本番環境での利用には通信経路のセキュリティ確保が不可欠です。パブリックインターネットを経由する通信は、潜在的なリスクを伴い、多くの企業のセキュリティポリシーや規制要件を満たすことが困難でした。

今回公開された手法では、「AWS PrivateLink」技術を活用したVPCインターフェイスエンドポイントを利用します。これにより、VPC(仮想プライベートクラウド)内で稼働するAIエージェントからAgentCore Gatewayへの通信が、AWSのプライベートネットワーク内で完結します。外部のインターネットを経由しないため、極めて安全な通信経路を確立できます。

プライベート接続の利点はセキュリティ強化に留まりません。AWSネットワーク内での直接接続により、通信の遅延が削減され、パフォーマンスが向上します。また、エンドポイントポリシーを設定することで、特定のゲートウェイへのアクセスのみを許可するなど、最小権限の原則に基づいた厳格なアクセス制御も可能です。

このVPCエンドポイントは、AIエージェントがツールを利用する際の「データプレーン」通信にのみ適用される点に注意が必要です。ゲートウェイの作成や管理といった「コントロールプレーン」操作は、引き続き従来のパブリックエンドポイントを経由して行う必要があります。この違いを理解しておくことが重要です。

このアーキテクチャは、オンプレミスのデータセンターからAIエージェントに安全にアクセスするハイブリッドクラウド構成や、複数のVPCをまたいだ大規模なシステムにも応用できます。企業は、自社の環境に合わせて柔軟かつスケーラブルなAI基盤を構築することが可能になります。

MIT、米国大学最強のAIスパコンを公開

圧倒的な計算能力

米国大学で最強のAIスパコン
ピーク性能は2 AIエクサフロップス
600基以上のNVIDIAGPU搭載

生成AI研究を加速

生成AIの開発・応用に特化
創薬や新素材設計への応用
気象データ補完や異常検知

幅広い分野への貢献

航空管制や国防分野での実績
ユーザーフレンドリーな設計
エネルギー効率の高い運用も追求

マサチューセッツ工科大学(MIT)リンカーン研究所は2025年10月2日、米国の大学で最も強力なAIスーパーコンピュータ「TX-GAIN」を公開したと発表しました。このシステムは、生成AIや物理シミュレーション、データ分析といった最先端分野の研究を加速させ、科学技術におけるブレークスルー創出を目的としています。研究者はこの圧倒的な計算能力を活用し、新たなイノベーションを追求します。

TX-GAINの性能は、ピーク時で2 AIエクサフロップス(毎秒200京回のAI向け演算)に達します。AI処理に特化した600基以上のNVIDIAGPUがこの計算能力を支え、米国の大学でトップ、北東部地域全体でも最強のAIシステムと評価されています。今夏オンライン化されて以来、研究者の注目を集めています。

TX-GAINの名称が示す通り、特に生成AIの開発と応用に力が注がれています。大規模言語モデルだけでなく、レーダー署名の評価、気象データの補完、ネットワークの異常検知、さらには新薬や新素材の設計といった多様な領域で活用が進みます。これまで不可能だった規模のシミュレーションやモデル訓練が可能になります。

リンカーン研究所スーパーコンピューティングセンター(LLSC)は、これまでも国の重要課題解決に貢献してきました。連邦航空局向けの航空機衝突回避システムや、国防総省向けの自律航法モデルの訓練など、社会の安全保障に直結する研究で数々の実績を上げています。TX-GAINはこれらの取り組みをさらに加速させる強力な基盤となります。

LLSCは、専門家でなくてもスパコンを利用できる「インタラクティブ性」を重視し、ラップトップPCのような手軽な操作性を実現。同時に、AIの膨大な電力消費という課題にも向き合い、エネルギー効率の高い運用と省電力化技術の研究にも取り組むなど、持続可能な研究環境の構築を目指しています。

TechCrunch Disrupt、団体割引が10月3日期限

Disrupt 2025 開催概要

10月27-29日にサンフランシスコで開催
1万人超の創業者投資家が集結
250人超の業界リーダーが登壇

団体割引と参加特典

10月3日までの期間限定割引
創業者15%、投資家20%オフ
VCとの個別面談や資金調達機会
著名起業家による成長戦略共有

IT専門メディアのTechCrunchが、10月27日から29日にかけてサンフランシスコで開催する大規模スタートアップイベント「Disrupt 2025」の団体向けパス割引を、10月3日までの期間限定で提供しています。創業者投資家は、この機会にチームで参加することで、最大20%の割引を受けられます。

具体的な割引内容は、創業者グループ(4〜9人)が15%、投資家グループ(同)が20%となっています。割引の適用は太平洋時間10月3日午後11時59分までで、この期間を過ぎると団体割引は提供されない予定です。個人の参加者にも別途割引が用意されています。

「Disrupt 2025」は、サンフランシスコのモスコーン・ウェストを会場に、1万人以上の創業者投資家、技術者が一堂に会するイベントです。3日間で200以上のセッションが開催され、250人を超える業界のトップリーダーが登壇し、テクノロジー業界の最新動向や未来について議論します。

創業者にとっては、自社のステージや分野に合わせたVCとの個別面談(マッチメイキング)が大きな魅力です。また、Boxのアーロン・レヴィ氏などユニコーン企業の創業者から、資金調達や事業拡大に関する実践的な知見を直接学べるセッションも多数用意されています。

一方、投資家には、厳選されたスタートアップ200社が賞金10万ドルを競うピッチコンテスト「Startup Battlefield」へのアクセスが提供されます。有望なプレシリーズA段階の企業と直接出会えるほか、投資家限定のセッションで最新の市場動向を掴むことも可能です。

スタートアップの未来を形作る知識、ネットワーク、そして資本にアクセスできる絶好の機会です。戦略を練り直し、事業を加速させたい経営者やリーダーにとって、チームでの参加は大きな価値をもたらすでしょう。割引終了まで残りわずかとなっています。

AI Claude、大企業の生産性を劇的改善

主要企業の導入事例

製薬大手ノボノルディスク
サイバーセキュリティ大手
Salesforce、Cox Automotive

驚異的な業務効率化

文書作成時間を90%削減
ソフトウェア開発速度が最大30%向上
わずか3ヶ月で投資を回収

成功への鍵

具体的な事業課題から着手
重要指標を計測しROIを証明

AI開発企業Anthropicは、同社のAIモデル「Claude」が、製薬大手ノボノルディスクやSalesforceといったグローバル企業で導入され、事業変革を推進していると発表しました。各社はClaudeを活用し、開発速度の向上や文書作成時間の大幅な短縮、顧客対応の強化など、具体的な成果を上げています。これは、AIが単なる実験段階を越え、企業の中核業務に不可欠な存在となりつつあることを示しています。

特に顕著なのが、デンマークの製薬大手ノボノルディスクの事例です。同社は創薬開発のボトルネックとなっていた臨床試験報告書の作成にClaudeを導入。従来10週間以上かかっていた作業がわずか10分に短縮され、90%もの時間削減を達成しました。これにより、新薬を待つ患者へより迅速に治療を届けられる可能性が広がります。

他の業界でも成果は目覚ましいものがあります。世界最大のサイバーセキュリティ企業パロアルトネットワークは、Claudeを用いてソフトウェア開発の速度を20〜30%向上。自動車サービス大手のコックス・オートモーティブでは、顧客からの問い合わせ対応や試乗予約が2倍以上に増加するなど、顧客体験の向上に直結しています。

さらに、AIの活用はより高度な領域へと進んでいます。Salesforceは、人間の介入なしに業務を遂行する「自律型AIエージェント」の動力としてClaudeを統合。オンライントレーディング大手のIGグループは、分析業務の自動化などでわずか3ヶ月で投資回収(ROI)を達成したと報告しています。

Anthropicは、これらの成功事例に共通する特徴として、①具体的な事業課題から始めること、②技術だけでなく人材への投資を行うこと、③生産性向上などの重要指標を計測すること、の3点を挙げています。AI導入を成功に導くための重要な示唆と言えるでしょう。

AWS、GNN不正検知を1コマンドで実用化

巧妙化する不正とGNN

巧妙化・組織化する金融不正
従来の個別分析手法の限界
関係性を捉えるGNNの有効性

GraphStorm v0.5の新機能

GNN本番実装の課題を解決
リアルタイム推論をネイティブサポート
SageMakerへのデプロイ1コマンドで実現
標準ペイロードでシステム連携を簡素化

Amazon Web Services(AWS)は、グラフ機械学習フレームワークの新バージョン「GraphStorm v0.5」を公開しました。このアップデートにより、グラフニューラルネットワーク(GNN)を用いたリアルタイム不正検知システムの本番実装が劇的に簡素化されます。巧妙化・組織化する金融不正に対し、企業が迅速かつ低コストで高度な対策を講じるための強力なツールとなりそうです。

金融不正の手口は年々高度化しており、個別の取引データだけを分析する従来型の機械学習モデルでは、巧妙に隠された組織的な不正ネットワークを見抜くことが困難になっています。この課題に対し、エンティティ間の関係性をモデル化できるGNNは極めて有効ですが、本番環境で求められるサブ秒単位の応答速度や大規模データへの対応、そして運用の複雑さが導入の大きな障壁となっていました。

GraphStorm v0.5は、この障壁を打ち破る新機能を搭載しています。最大の特長は、Amazon SageMakerを通じたリアルタイム推論のネイティブサポートです。従来は数週間を要したカスタム開発やサービス連携作業が不要となり、学習済みモデルを本番環境のエンドポイントへ単一コマンドでデプロイできるようになりました。

このデプロイの簡素化により、開発者インフラ構築の複雑さから解放され、モデルの精度向上に集中できます。また、標準化されたペイロード仕様が導入されたことで、クライアントアプリケーションとの連携も容易になりました。これにより、不正が疑われる取引データをリアルタイムでGNNモデルに送信し、即座に予測結果を受け取ることが可能になります。

AWSは、公開データセットを用いた具体的な実装手順も公開しています。このソリューションは、①グラフ構築、②モデル学習、③エンドポイントデプロイ、④リアルタイム推論という4ステップで構成されます。これにより、企業は自社のデータを用いて、迅速にGNNベースの不正防止システムを構築し、不正取引を未然に防ぐプロアクティブな対策を実現できます。

GraphStorm v0.5の登場は、これまで専門家チームによる多大な工数を必要としたGNNの実用化を、より多くの企業にとって現実的な選択肢としました。この技術革新は、金融サービスに限らず、様々な業界で応用が期待されるでしょう。

AWS、セキュアな医療AI開発を加速

Bedrock AgentCoreの威力

複雑な医療AI開発を簡素化
既存APIをセキュアにツール化
サーバレスで大規模運用が可能
HIPAA準拠など高セキュリティ

具体的な導入効果と事例

予約業務などを自動化し負担軽減
Innovaccer社は15億ドル削減
400以上のデータソースを統合
患者中心の医療ネットワークを実現

AWSは、医療向けAIエージェントの開発・運用を大規模かつセキュアに行うための新サービス群「Amazon Bedrock AgentCore」を発表しました。これにより、医療機関は複雑なデータ連携の課題を克服し、HIPAAなどの厳格な規制に準拠したインテリジェントなソリューションを迅速に構築できます。

医療業界では、電子カルテの形式が多様でデータがサイロ化しやすいという長年の課題があります。FHIRのような標準規格も存在しますが、既存システムとの統合には専門知識が求められ、AIエージェントを導入する際の障壁となっていました。

Bedrock AgentCoreは、この課題を解決します。既存のAPIをAIが利用可能なツールへと安全に変換する「AgentCore Gateway」や、セキュアな実行環境を提供する「Runtime」などを組み合わせることで、開発の負担を大幅に軽減します。

具体的な活用例として、子供の予防接種履歴の確認から予約までを対話形式で完結させるAIエージェントが紹介されています。これにより、保護者や医療機関の管理負担が軽減され、患者体験の向上が期待できます。

ヘルスケアAI企業のInnovaccer社は、いち早く自社プラットフォームにBedrock AgentCoreを採用しました。400以上のデータソースを統合し、AIエージェントを活用することで、既に15億ドルのコスト削減を達成するなど、大きな成果を上げています。

Bedrock AgentCoreの登場は、AIによる患者ケアの向上と業務効率化を大きく前進させるものです。セキュアでスケーラブルなAI活用が、より患者中心のインテリジェントな医療ネットワークの実現を加速させるでしょう。

Cohere、企業価値70億ドルに到達、AMDと提携でNvidiaに対抗

企業向けAIモデル開発のCohereは9月24日、1億ドルを追加で調達し、企業価値が70億ドルに達したと発表しました。これは8月の5億ドル調達に続くものです。同時に半導体大手AMDとの提携も締結し、NvidiaOpenAIの連合に対抗する動きを見せています。この提携は、AI市場の勢力図に変化をもたらす可能性を秘めています。 今回の提携の核心は、CohereのAIモデル群がAMDのGPU「Instinct」で動作可能になる点です。これは市場を独占するNvidiaGPUへの依存を減らす動きと言えるでしょう。さらに、AMD自身もCohereの顧客となり、自社内でAIモデルを活用します。CohereはNvidiaGPUのサポートも継続するとしています。 Cohereは2019年、生成AIブームの火付け役となった論文「Transformer」の共著者によって設立された有力企業です。しかし、OpenAI(企業価値5000億ドルとの報道)やAnthropic(同1830億ドル)といった競合に比べると、企業価値の規模では後塵を拝しているのが現状です。 Cohereは特に「AI主権」を重視する企業をターゲットにしています。これは、自社のデータやAIモデルを外部の事業者に委ねず、自国・自社内で管理したいというニーズに応える戦略です。今回のラウンドに国際的なネットワークを持つ投資家が新たに参加したことも、この戦略を裏付けています。

OpenAI、AIハードウェア開発か 元Appleデザイナーと協業

OpenAIが、元Appleのチーフデザインオフィサーであるジョニー・アイブ氏と提携し、複数のAIハードウェア開発を検討していると報じられました。関係者の話として、すでにAppleの製品組立業者であるLuxshareと契約を結んだとされています。 開発が噂されるデバイスは多岐にわたります。最も有力なのは「ディスプレイのないスマートスピーカー」に似た製品です。この他にも、スマートグラスやデジタル音声レコーダー、身につけられるピン型デバイスなどが候補に挙がっている模様です。 この動きは、OpenAIサム・アルトマンCEOが以前から語っていた「デバイスファミリー」構想を具体化するものと言えるでしょう。最初の製品は2026年後半から2027年初頭の発売が目標とされており、ソフトウェア中心だった同社の大きな戦略転換となりそうです。 生産体制の構築も進んでいます。iPhoneやAirPodsの生産を担うLuxshareやGoertekなど、Appleのサプライチェーンネットワークを活用する動きが報じられました。これにより、高品質な製品の安定供給を目指す狙いがあると考えられます。 ハードウェア開発は人材獲得競争にも発展しています。元Appleの製品デザイン責任者がOpenAIハードウェア責任者に就任するなど、Appleからの人材流出が顕著です。これは、巨大テック企業間の新たな競争の火種となる可能性を秘めています。

NVIDIAのBlackwell、AI工場を駆動する新プラットフォーム

NVIDIAは最新アーキテクチャ「Blackwell」を、単なる半導体チップではなく「AI工場」を駆動するプラットフォームだと説明します。次世代AIモデルはパラメータ数が1兆を超えると予測され、膨大な計算需要が生まれています。Blackwellはこうした需要に応えるべく、システム全体で性能を追求する設計思想に基づいています。 その中核がラック規模システム「NVIDIA GB200 NVL72」です。これは単一の巨大GPUとして動作するよう設計され、AI推論の効率を劇的に高めます。重さ1.5トンのラックに60万以上の部品と約3.2kmの配線が詰め込まれ、ハードウェアとソフトウェアが密に統合されています。 性能の源泉は、2つのBlackwell GPUと1つのGrace CPUを統合した「Grace Blackwellスーパーチップ」です。高速インターコネクト技術「NVIDIA NVLink」で直結し、CPUとGPUがメモリを直接共有します。これによりAIワークロードの遅延を減らし、スループットを高めます。 GB200 NVL72内では「NVLink Switch」が性能ボトルネックを防ぎます。5,000本以上の銅線ケーブルが72基のGPUを網の目のように接続。毎秒130テラバイトという驚異的な速度でデータを移動させます。これはインターネット全体のピーク時トラフィックを1秒未満で転送できる速度に匹敵します。 AI工場では数万台のGB200 NVL72が一体で機能する必要があります。これを「Spectrum-X Ethernet」や「Quantum-X800 InfiniBand」といったネットワーク技術が実現。データセンターレベルでの統一的な動作を可能にし、全GPUが工場内のデータネットワークへ直接接続される仕組みを構築します。 データセンターという巨大なコンピュータを動かすOSが「NVIDIA Dynamo」です。多数のGPUにまたがるAI推論リクエストを調整・最適化し、需要に応じてGPUリソースを動的に割り当てます。これにより工場全体の生産性と収益性を最大化し、運用コストを低減します。 Blackwellはもはや単なるチップではなく、次世代の産業革命を支えるAI工場のエンジンです。すでに世界最大級のコンピューティングクラスターがこのアーキテクチャを基盤に構築されており、AIによるイノベーションをさらに加速させていくことが期待されます。

DeepMind、AIで流体力学の難問に新解法を発見

Google DeepMindは2025年9月18日、AI技術を用いて流体力学における長年の難問に新たな解を発見したと発表しました。ニューヨーク大学やスタンフォード大学などとの共同研究で、物理法則を組み込んだAIを活用し、速度や圧力が無限大になる「特異点」と呼ばれる現象の新たなファミリーを発見しました。この手法は、数学や物理学、工学分野における未解決問題の解明を加速させる可能性を秘めています。 流体力学は、気象予測から航空機の設計まで多岐にわたる分野の基礎ですが、その方程式には物理的にあり得ない「特異点(ブローアップ)」という解が存在し、数学者を悩ませてきました。この特異点を理解することは、方程式の限界を知り、物理世界への理解を深める上で極めて重要です。特に、ごく精密な条件下でのみ発生する「不安定な特異点」の発見は困難を極めていました。 今回の発見の鍵となったのは、「物理情報ニューラルネットワーク(PINNs)」というAI手法です。大量のデータから学習する従来のAIとは異なり、PINNsは物理法則の数式そのものを満たすように学習します。研究チームはこれに数学的洞察を組み込み、従来手法では捉えきれなかった特異点を発見する探索ツールへと進化させました。これにより、不安定な特異点の新たなファミリーを体系的に発見することに成功しました。 この研究で達成された精度は驚異的です。研究チームによると、その誤差は地球の直径を数センチの誤差で予測するレベルに相当します。このような極めて高い精度が、厳密なコンピュータ支援による証明を可能にし、不安定で捉えにくい解の発見に不可欠でした。AI技術が、厳密さが求められる数学的な発見の領域に到達したことを示しています。 今回の成果は、AIと人間の数学的知見を融合させた新たな研究手法の可能性を示しています。このアプローチは、流体力学だけでなく、数学、物理学、工学における他の長年の課題解決を促進することが期待されます。AIが専門家を支援し、科学的発見を加速させる「コンピュータ支援数学」の新時代が到来するかもしれません。

Gemini 2.5がICPCで金獲得。人間不能の難問を30分で解決しAGIへ前進

プログラミング能力の証明

ICPC世界大会で金メダルレベルの成績
全12問中10問を正解し総合2位相当
人間チームが解けなかった難問Cを突破
国際数学オリンピック(IMO)に続く快挙

技術的ブレイクスルー

マルチステップ推論並列思考能力を活用
動的計画法と革新的な探索手法を適用
創薬半導体設計など科学工学分野への応用期待
プログラマーの真の協働パートナーとなる可能性

Google DeepMindのAIモデル「Gemini 2.5 Deep Think」が、2025年国際大学対抗プログラミングコンテスト(ICPC)世界大会で金メダルレベルの成果を達成しました。人間チームが誰も解けなかった複雑な最適化問題を見事に解決し、抽象的な問題解決能力におけるAIの劇的な進化を証明しました。

Geminiは競技ルールに従い、5時間の制限時間で12問中10問を正解しました。これは出場した大学139チームのうち、トップ4にのみ与えられる金メダルレベルに相当し、大学チームと比較すれば総合2位の成績となります。

特に注目すべきは、全ての人間チームが解決できなかった「問題C」を、Geminiが開始からわずか30分以内に効率的に解いた点です。これは、無限に存在する構成の中から、最適な液体分配ネットワークを見つけ出すという、極めて困難な課題でした。

Geminiは、各リザーバーに「プライオリティ値」を設定し、動的計画法を適用するという革新的なアプローチを採用しました。さらにミニマックス定理を利用し、最適解を効率的に導出するためにネストされた三進探索を駆使しました。

この快挙は、プレトレーニング強化学習、そして複数のGeminiエージェントが並列で思考し、コードを実行・検証するマルチステップ推論技術の統合によって実現しました。これにより、Geminiは最も困難なコーディング課題からも学習し進化しています。

ICPCの成果は、AIがプログラマーにとって真の問題解決パートナーになり得ることを示しています。AIと人間の知見を組み合わせることで、ロジスティクスやデバッグ創薬、マイクロチップ設計といった科学・工学分野の複雑な課題解決を加速させることが期待されます。

この先進技術の一部は、すでにGoogle AI Ultraのサブスクリプションを通じて、軽量版のGemini 2.5 Deep Thinkとして提供されています。AIコーディングアシスタントの知能が飛躍的に向上し、開発現場の生産性向上に直結するでしょう。

AT&T、AI秘書で迷惑電話を遮断 ネットワーク履歴活用し精度向上

機能と動作原理

未登録番号からの着信を自動で一次応答
通話履歴に基づき人間関係を分析
声や緊急性から発信者が人間か判定

優位性とユーザー体験

特定のデバイス依存なしで利用可能
GoogleAppleとの差別化要素
リアルタイムで文字起こしを確認可能
AIによる要約やメッセージ取得

AT&T;は、迷惑電話やロボコールを自動で選別するAIアシスタント機能「デジタルレセプショニスト」のテストを一部顧客向けに開始しました。これは個人の通話履歴データを活用し、キャリアのネットワーク側で自動的に通話をスクリーニングするものです。未知の番号からの着信に対し、AIが発信者と用件を確認することで、多忙なビジネスパーソンの生産性向上に貢献します。

この機能の最大の特徴は、AIが個々の端末ではなく、AT&T;のネットワーク全体に組み込まれている点です。GoogleAppleの既存機能がデバイス上の連絡先リストに依存するのに対し、AT&T;のAIはネットワークから得るユーザーのコールパターンを分析します。これにより、頻繁なやり取りを把握し、信頼できる発信者を正確に判断することで、より高い精度での通話フィルタリングを実現しています。

未知の番号から着信があった場合、AIアシスタントが自動で応答し、発信者が人間であるか、または緊急性があるかを声のトーンなどから判定します。基準を満たした通話のみを本人に転送するか、メッセージを残すかを選択できます。

また、ユーザーは専用アプリを通じてAIによる通話のリアルタイム文字起こしを確認し、いつでも会話に加わることも可能です。AT&T;の最高データ責任者によると、このAIアシスタントは単なるスクリーニングに留まらず、将来的に予約やスケジュール調整といった複雑なタスクの代行へと進化する可能性を秘めています。

Disrupt 2025が展示枠最終開放 ネットワーキング強化の好機

出展・参加の最終機会

2025年10月27日から開催
サンフランシスコで1万人規模の集客
追加展示テーブルを最終10卓開放
ボランティア募集は9月30日締切

出展による競争優位性

投資家やプレスへの高い露出機会
意思決定者との直接的な交流
TechCrunchメディアでブランドを強化
ボランティアは全イベント無料パス獲得

世界最大級のスタートアップ会議「TechCrunch Disrupt 2025」が、10月27日からサンフランシスコで開催されます。同イベントでは、圧倒的な需要に応え、展示テーブルの最終10卓追加開放を発表しました。同時に、イベント運営を支えるボランティアの募集も9月30日に締め切られます。市場価値を高めたい経営層にとって、ネットワーキングの最後の好機となります。

Disruptは単なるテックカンファレンスではなく、スタートアップを次の段階へ進める「ローンチパッド(発射台)」として機能します。1万人を超える創業者、著名VC、技術イノベーターが一堂に会し、初期投資家の獲得や重要なパートナーシップの締結を目指します。ここで得られる牽引力と会話が、ビジネスの将来を左右します。

追加開放された展示テーブルは、製品を効果的にアピールする最後の機会です。展示スペースを持つことで、会場を回遊する数千人の投資家やプレスに対し、製品やサービスを直接紹介できます。テーブルがない場合、重要な高レベルの意思決定者との直接的なエンゲージメント機会を逃すことになります。

出展パッケージ(1万ドル)には、3日間のエキスポホールにおける展示スペースに加え、合計10枚のチームパスが含まれます。さらに、TechCrunchチャンネル全体でのブランド露出、プレス対応、そしてリード獲得ツールへのアクセス権が付与されます。これは競争優位性を確立するための戦略的投資といえます。

また、イベントの舞台裏を体験したい将来の創業者エンジニアにとって、ボランティア参加も推奨されます。ボランティアは、イベントの運営経験を積み、強力なネットワークを構築しながら、全イベントへの無料パスを手に入れることができます。応募は9月30日が期限です。

GPT-5-Codexが開発生産性を劇的に向上させる理由

エージェント能力の進化

複雑なタスクで最長7時間以上の独立稼働
タスクに応じた思考時間の動的な調整
迅速な対話と長期的な独立実行の両立
実世界のコーディング作業に特化しRL学習を適用

ワークフローへの密着

CLI、IDE拡張機能、GitHubへシームレスに連携
ローカル環境とクラウド間のコンテキスト維持
画像やスクリーンショットを入力可能

品質と安全性の向上

コードレビューの精度が大幅に向上
重大なバグを早期に発見しレビュー負荷を軽減
サンドボックス環境による強固なセキュリティ

OpenAIは、エージェントコーディングに特化した新モデル「GPT-5-Codex」を発表し、開発環境Codexを大幅にアップグレードしました。これはGPT-5を実世界のソフトウェアエンジニアリング作業に最適化させたバージョンです。開発者はCLI、IDE、GitHubChatGPTアプリを通じて、より速く、信頼性の高いAIアシスタントを活用できるようになります。

最大の進化は、タスクの複雑性に応じて思考時間を動的に調整する能力です。GPT-5-Codexは、大規模なリファクタリングデバッグなどの複雑なタスクにおいて、最長7時間以上にわたり独立して作業を継続できることが確認されています。これにより、長期的なプロジェクトの構築と迅速なインタラクティブセッションの両方に対応します。

モデルは、既存のコードベース全体を理解し、依存関係を考慮しながら動作検証やテスト実行が可能です。特にコードレビュー機能が強化されており、コミットに対するレビューコメントの正確性と重要性が向上。重大な欠陥を早期に特定し、人間のレビュー工数を大幅に削減します。

開発ワークフローへの統合も一層強化されました。刷新されたCodex CLIとIDE拡張機能(VS Codeなどに対応)により、ローカル環境とクラウド環境間でシームレスに作業を移行できます。コンテキストが途切れないため、作業効率が劇的に向上します。

さらに、Codex画像やスクリーンショットを入力として受け付けるようになりました。これにより、フロントエンドのデザイン仕様やUIバグなどを視覚的にAIへ共有し、フロントエンドタスクの解決を効率化します。また、GitHub連携によりPRの自動レビューや編集指示も可能です。

安全性確保のため、Codexはデフォルトでサンドボックス環境で実行され、ネットワークアクセスは無効です。プロンプトインジェクションリスクを軽減するとともに、開発者セキュリティ設定をカスタマイズし、リスク許容度に応じて運用することが可能です。

Nvidia買収、中国が独禁法違反と認定。米中AIチップ摩擦が激化

中国当局の判断

Nvidiaの2020年Mellanox買収が対象
独占禁止法違反の疑いを認定
国家市場監督管理総局が発表
現時点での具体的罰則は未公表

米中関係への波紋

半導体を巡る米中間の緊張がさらに高騰
マドリードでの関税交渉にも影響必至
AIチップの輸出規制が依然として不透明
中国側はNvidiaチップ購入を抑制

中国の国家市場監督管理総局は、半導体大手Nvidiaが2020年のMellanox Technologies買収に関連し、独占禁止法に違反したとの裁定を下しました。これは、米中間の半導体およびAIチップを巡る貿易摩擦が深刻化する中で発表されたもので、両国の戦略的な緊張が一段と高まっていることを示しています。

今回の裁定は、Nvidiaが約70億ドルで実施したコンピューターネットワークサプライヤーの買収を対象としています。中国当局は違反を認定したものの、現時点では具体的な罰則や是正措置については言及せず、調査を継続する方針です。Nvidia側は「全ての法律を順守している」と声明を発表し、当局への協力姿勢を示しています。

この裁定は、スペイン・マドリードで進行中の米中間の関税交渉に暗い影を落としています。交渉自体は半導体に特化していませんが、Nvidiaチップへのアクセス問題は両国の主要な争点です。中国の動きは、米国のAIチップ輸出規制に対抗し、市場への圧力を強める意図があると見られます。

米国ではAIチップの輸出規制が頻繁に変更されています。バイデン前政権下の広範なAI拡散規則は撤回されたものの、トランプ政権下では中国向けの特定チップにライセンス要件が課されました。その後販売再開が認められましたが、現在は米国政府が売上収益の15%を徴収する異例の措置が続いています。

Nvidiaは規制の変更に翻弄されながらも、中国市場向けチップの販売再開を目指してきました。しかし、当局は国内企業に対しNvidia製AIチップの購入を抑制するよう促しており、輸出プロセスを経たチップは未だ市場に出回っていません。今回の独禁法裁定により、同社の中国事業戦略はより複雑な局面を迎えるでしょう。

SageMaker HyperPod、LLM学習の通信遅延を解消するトポロジー認識型スケジューリング導入

導入された新機能の概要

物理的配置を考慮するトポロジー認識型スケジューリング
大規模AIワークロードの最適化を目的
Amazon EKSクラスター上でのリソース管理を効率化

LLM学習効率化への貢献

ネットワークホップ削減による通信速度の向上
GPUクラスターの利用効率とスループットを改善

活用方法と技術要件

Kubernetesマニフェストでの必須/推奨トポロジー設定
SageMaker HyperPod CLIからのジョブ送信に対応
Task Governanceアドオン(v1.2.2以降)が必要

Amazon Web Services(AWS)は、大規模な生成AI(LLM)モデルのトレーニング効率を飛躍的に向上させるため、Amazon SageMaker HyperPodのタスクガバナンス機能に「トポロジー認識型スケジューリング」を導入しました。この新機能は、GPUインスタンス間のネットワーク通信遅延という、LLM学習における最大のボトルネックの一つを解消します。

生成AIワークロードは通常、Amazon EC2インスタンス間で広範な通信を必要とし、ネットワーク帯域幅と遅延が学習時間全体に大きく影響します。データセンター内のインスタンス配置は階層的な構造を持っており、同じ物理単位内に配置されたインスタンス間の通信は、異なる単位間の通信よりもはるかに高速になるため、配置最適化が重要でした。

このトポロジー認識型スケジューリングは、EC2のネットワークトポロジー情報を活用し、ジョブ提出時に物理的な近接性を考慮してリソースを割り当てます。具体的には、クラスター内のインスタンスの配置をネットワーク階層構造(レイヤー1〜3)に基づいて把握し、通信頻度の高いポッドを最も近いネットワークノードに集中配置します。

企業にとっての最大のメリットは、AIイノベーションの加速と市場投入までの時間(Time to Market)の短縮です。タスクガバナンス機能により、管理者やデータサイエンティストはリソース調整に時間を費やすことなく、効率的に計算リソースを利用できます。これは大規模なGPUクラスターを持つ組織全体の生産性向上に直結します。

エンジニアは、この新機能をKubernetesマニフェストファイルを通じて簡単に利用できます。ジョブ実行時に、全てのポッドを同一ネットワークノードに配置することを「必須(required)」とするか、「推奨(preferred)」とするかを選択可能です。また、SageMaker HyperPod CLIからもトポロジー指定パラメータを用いてジョブを送信することができ、柔軟な運用が実現します。